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Section 1: Project Overview 

So much about us, such as our names, contact information, educational background, work 

history, and even friends, is available on the internet; we’ve formed an “identity network” online. For our 

capstone design project, we chose to build an identity recognition application to index into this network.  

The design and implementation of our project required cross-disciplinary knowledge from signal 

processing, pattern recognition, and to an extent even machine learning. In a nutshell, the goal of our 

project was to retrieve data on an individual, representative of their identity, given just one image of 

their face. 

1.1 Project Motivation 

One question, which many people, companies, or agencies ending up asking, is “who are you?” 

Because it’s often useful to know information about a person, many tools have been developed to 

facilitate gathering information on individuals. For instance, given a person’s name, one can find contact 

information about that person in a phone book. To find about someone’s educational background or field 

of interest, you might look them up in a college directory. If you’re interested in their professional career, 

you might be able to learn about them on LinkedIn. Facebook acts as a similar data source for a target 

person’s social life and connections. If you’re willing to work a little bit more, you might be able to find 

even more information (such as what papers they’ve written, which articles their mentioned in, etc.) by 

using a web search engine. The point is that technology, and specifically computer internetworks, has 

made so much information about individuals available publicly. Unfortunately, it’s very difficult to search 

through this data unless you come up with a good textual identifier of the target person (such as their full 

name). Sometimes, such as in crime-fighting, even retrieving the name of an individual can be 

challenging. Our goal was to tap into this vast resource and extract rich but pertinent data about a target 

given just an image of their face; we wanted to use an image of a person’s face as the primary key to 
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index into online databases and extract data. To visualize the end result “goal” of our project, we 

designed a mock screenshot of the application: 

 

Figure 1: Mock Screenshot 

 

 1.2 Restricted Problem 

An application which could effectively lookup information on arbitrary individuals from just their 

face would be incredibly useful. Surveillance cameras could link to this software to help find wanted 

individuals, and intelligence agencies would have tons of uses for it as well. We knew that trying to solve 

such a large problem in a semester was unrealistic, so we decided to limit the scope of the problem. 

The first big limitation is that the target input image would be a full-face, frontal image planar to 

the camera lens; rotations in the frontal plane are tolerable, but skew in the other two dimensions are 
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not.  

 

Figure 2: Planarity 

The second limitation we made was that the only identifiable targets were the students and 

teaching staff for the course. This was much more practical than comparing the probe image to all of the 

targets in the world, and also allowed for us to have a cool demonstration at the end of class (discussed 

more in Section 7.2). 

The third limitation was that the information we “looked up” on the target individuals would 

come only from the Andrew Directory (accessible on the Andrew UNIX machines via the finger utility). 

Unlike web queries, the information in the Andrew Directory is highly structured, easily accessible, and 

contains relatively low noise. In the real world, we would have to deal with problems such as incomplete 

data, categorization and parsing, and dynamic attributes (for instance a professor might have a “Field of 

Interest” but a professional wrestler may not). Making this third restriction helped limit the scope of our 

project to more signal processing than search and data mining. However, we made our application 

modular and separated the recognition from the data lookup, so all new features, such as a Facebook 

Lookup, can be added in the future (discussed more in Section 9.5.2).  
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1.3 Tasks 

After outlining what we’d like the final product application to do, the next step was to come up 

with smaller tasks that partition the work. In our case, the work for the application could be divided into 

the following four sub-tasks: face detection (Section 2), face normalization (Section 3), face recognition 

(Section 5), and entry lookup (Section 6). Face detection refers to finding where in the image the face 

lies. Face normalization is the process of extracting the same “features” in the face throughout various 

images so that the recognizer can compare apples to apples. Face recognition matches an untagged 

probe face to one of the target faces based on similarity in the features. Finally, the application goes 

through an “entry lookup” stage to retrieve information on the tagged probe. 

1.4 Novelty 

Groups in previous years have worked with facial detection and recognition. Such groups include: 

 1) Facebook Tagging – F09, Group 1 

2) Identification of Surveillance Images – S02, Group 2 

3) Restoration of Partially Faded Face Images – F05, Group 6 

4) Transformation From Non-Frontal Facial Images to Front-View Pictures – F06, Group 11 

 

Our project was somewhat similar to the Facebook Tagging project from Fall 2009, except the 

idea for us was more for recognition and bio-information retrieval than for simply tagging. The second 

project listed focused on detection almost entirely; the goal of their project was to identify which pictures 

from a surveillance source contain faces. The third project deals with faces too, but only to the extent for 

faded image restoration. Finally, the fourth project deals with a dimension we chose to ignore due to 

complexity, namely, non-planar faces. Moreover, our group came up with some genuinely new ideas. The 

most dramatic was the polygon-model for the face (as opposed to the traditional rectangle model), 
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discussed in Section 3.4. Another was the from-scratch implementation of Fisherfaces, as discussed in 

Fisherface paper1. Next was the concept of increasing the targets-per-class ratio with artificial 

illumination (Section 4.4). Finally, the thought of indexing into an identity network was a novel concept 

we formed as well. 

Section 2: Face Detection 

 Face detection, or finding where the face is in an image, is vital for face recognition. To see why, 

let’s assume that we didn’t have a face detector, but rather ran the entire face recognition algorithm on 

the entire picture (as opposed to just the face). The recognition “learner” would not know any better 

than to assume that all of the pixels in the image are important. To simplify my adversarial argument, 

assume there are only two targets, John and Mary, which the recognition learner is trying to classify 

against. Furthermore, assume the target images are waist up pictures consisting mostly of the shirt, but 

also of the face, of the person in question. If John is always wearing a red shirt in the target sample 

pictures, and Mary is always wearing a white shirt, the recognition learner is likely to classify a red-shirted 

picture of Mary as John just because the shirt is such a large part of the picture. To avoid this problem, 

we need to feed the recognition learner only the pixels that matter; namely, the ones in the face. 

2.1 What is Face Detection? 

Before we can answer that, let’s ask an even more fundamental question: what is a “face” to a 

computer? We might understand a face to be a semi-circular object with two eyes, a nose, and a mouth, 

but how is a computer to determine whether a given rectangular grid of pixels contains those elements in 

the right locations? For instance, if I took a picture of a human face and started blurring lines, shifting 

pixel blocks, and adjusting the colors, when would it stop being a face? There isn’t one correct answer to 

that question, and in fact implementing a face detection program is non-trivial. In practice, the computer 

                                                           
1
 See Reference #1 
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is taught a “model” for a face (based on where it should find eyes, the nose, etc.) and only images which 

fit the model are considered to be faces. From this definition, we can define face detection as the process 

of finding pixel landmarks, in a probe image, corresponding to the model of a face. In order to save us 

time, the CyLab Research Group gave us a working detection binary which we used, as is, in our project. 

 2.2 Implementation, Functionality, and Restrictions 

The face detector we were given was implemented using the popular Viola-Jones algorithm2; the 

exact implementation of Viola-Jones is outside the scope of this paper. The detector took as input an 

image containing a face, and produced a facial landmark points file with the interpolated pixel points3 of 

the landmarks in the facial model. It could also annotate an image with facial landmark points file by 

drawing markers at the pixels near the landmarks. If the input image contained nothing which fit the 

facial model, the program would assert that no face was found and terminate. Finally, if multiple faces 

were present in the input image, the algorithm would tend to find the facial blob of highest pixel area. 

 

Figure 3: Face Detection 

The detector we were given, albeit extremely useful for our project, did come with quite a few 

restrictions. Firstly, the facial model was only able to, for the most part, recognize full-frontal, planar 

faces. This is part of the reason why we chose to restrict out entire identity recognition application input 

                                                           
2
 See Reference #2 

3
 Although pixel points are integral, the facial landmark point files contain decimal pixel coordinates to indicate 

precisely where the algorithm found a given landmark (calculated by interpolating amongst nearby pixels). 
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to such images. Another restriction was in the speed of the detection; we found that the clock runtime to 

execute the given Windows binary (with a standard AMD64 laptop) on a 500 by 300 pixel input image 

was between 1 and 2 seconds. Although this wasn’t so bad for our single probe image demonstration, 

this wouldn’t be able to run real-time (in say, a video) at 30+ frames per second. Yet another restriction 

was the accuracy of the detector. Because “being a face” isn’t an absolutely objective characteristic of 

images, it’s tough to quantify success rate. In general, however, Viola-Jones face detectors are credited 

with having a low classification error rate4. Experimentally, we noticed that the face detector performed 

very poorly when the image had a planar rotation of more than 10 degrees. In that case, the face 

detector would usually either report that no face was found, or the landmarks found (specifically the 

jawline) would be off by a large margin. Even without rotations, the face detector often found incorrect 

landmarks. Below is a full-frontal, planar, facial image, with very little rotation, that’s been annotated and 

landmarked by the given detector. 

 

Figure 4: Incorrect Landmarks 

                                                           
4
 Based on the comparison amongst detectors on page 21 of the Viola-Jones paper 
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Upon close observation, we see that the detector incorrectly found the jaw-line as just stretch 

marks due to the smile. The mouth wasn’t found correctly, and even the locations of the right eyebrow 

and eyes are slightly off. With that said, we rarely observed a total false positive or false negative with 

the face detector; generally the errors were the placement of the landmarks. 

2.2.1 Available Landmarks 

There were 79 landmarks which were annotated in the facial landmark points file. There 

exact indices and locations are shown in the figure below. 

 

Figure 5: Facial Landmark Points 
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2.3 Interfacing 

Our program, written in Visual C++, needed to interface with the given Windows binary face 

detection program. We did this by spawning a process to run the binary. Specifically, given an input 

image, we would launch the face detector binary in a new process, which would then write the 

interpolated pixel coordinates for each of the 79 landmarks out to a file. By reading this file, our program 

was able to interface with the face detector. 

Section 3: Face Normalization 

The distinction between face normalization and face recognition is actually an artificial 

conceptual barrier used for modularity. In truth, the normalization process goes hand in hand with the 

classifier; having a great normalizer makes the job of the recognition engine simple, and vice versa. 

3.1 What is Face Normalization? 

The concept of normalization is not unique to faces, or even images. Usually normalization is 

meant to offset some sort of affect which, if left untouched, would largely skew the results. For instance, 

when comparing the bytes corresponding to two audio files, one might normalize them so that the 

average energy in the audio files is the same (to account for one file being louder than the other). 

Likewise, we came up with our own criterion for normalization (within the domain of facial images): 

1) After normalization, two different pictures of the same person should look similar. This 

applies even if the individual has a different pose, facial expression, or is in different lighting. 

2) After normalization, pictures of different people should not look similar. 

3) Any facial picture, after normalization, will have exactly the same number of dimensions as 

any other post-normalized facial picture. 
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The first criterion is the most obvious for normalization; the normalizer should account for 

variations in the face (such as pose, tilt, and mouth expression) so that all pictures of “John” end up being 

similar. The second allows the face recognition engine to discriminate between targets; if everyone 

looked similar discrimination would be tough. Thus the requirement that different individuals should not 

look similar. The third criterion is a specific limitation because of how we plan to use these normalized 

faces. The algorithms which we implemented later on (PCA5 and Fisherface recognition6) required that 

the training and targets all have the same dimensionality. In machine learning or pattern recognition, 

each training or target instance (in our case facial image) is characterized by a set of <feature: value> 

pairs. Each feature is called a dimension. In an advanced recognition system, features for a face might 

include soft biometrics such as hair color and gender (see Section 9.3).  In our case, a “dimension,” or 

feature, was simply a pixel in the normalized image. Thus, the third criterion simply states that the 

normalized images must have the same number of pixels. 

3.2 Naïve Normalization 

At first, normalization doesn’t seem like such a daunting task since we’re given a face detector. 

One obvious normalization scheme would run detection on the facial image, and crop the image down to 

the smallest rectangle which contains the face. The y-coordinate of the top-most landmark and the x-

coordinate of the left-most landmark would together form the top-left corner, and the bottom-right 

corner could be calculated similarly. Unfortunately, this algorithm entirely neglects variations due to 

planar rotations in the facial image. 

3.2.1 Planar Rotations 

                                                           
5
 Principal Component Analysis is discussed in Section 5.3 

6
 Fisherface recognition is discussed in Section 5.5 
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A refined normalization procedure would take into account pose by performing tilt 

correction prior to cropping the image. One way to tell the “slant” of a face is by looking at the 

slope between the pupils in the face; a positive slope means that the image is rotated counter-

clockwise, and a negative slope means the image is rotated clockwise. The pixel coordinates of 

the pupils were estimated as just the average of the “eye landmark points” (in Figure 5, points 

24-31 [L] and 16-23 [R]). The next figure shows an intermediary stage when finding the slope of 

between the pupils prior to performing the rotation. 

 

Figure 6: Tilt Correction 

Unfortunately, the face detector itself doesn’t always find the eyes perfectly (especially 

when the input image is rotated), so often times the slope correction isn’t enough to make up for 

the true rotation. Also, if the image is rotated enough (more than 15 degrees roughly), the face 

detector will fail to even find any face in the image. 

Assuming we are given the exact slope between the pupils, how can we account for this 

and rotate the image? First, define   as the slope of the line and   as the counter-clockwise 

angle between the horizontal line and the line connecting the pupils. By some elementary 

trigonometry, we see that 
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          (3.1) 

Now, let (   )  (     ) define a mapping from the tilted image to the tilt-corrected 

image. Specifically the tilt-corrected image will be the collection of (     ) pixels which result 

from applying the mapping over the pixels (   ) in the original image. Note that any pixel 

(     ) which does not get mapped to can be colored black. It turns out that the mapping itself is 

linear (with weights proportional to trigonometric functions of  ). Specifically, the mapping is 

 
[
  

  
]  [

         
        

] [
 

 
] 

(3.2) 

By applying this map to the image shown before, we get the tilt-corrected version, shown 

below: 

 

Figure 7: Linear Mapping Rotation 

So, our new normalizer would perform the rotation and then find the smallest rectangle 

which contains the entire face. Note that because we don’t perform any cropping before the 

rotation, we wouldn’t have blacked out portions of the face as we see in the figure above. 

There are still two major problems with this type of normalization. First, nothing enforces 

that each normalized picture has the same dimensionality (number of pixels); even if the camera 
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is the same, images taken closer to the camera will have more facial pixels than a face far away. 

Fortunately, the fix to that is to just resize7 the image to a preset resolution. The second is that 

the corner landmarks produced by a Viola-Jones detect are far less accurate than the landmarks 

of a landmark detected within the object. Thus, “the smallest rectangle containing the whole 

face” is not a very good crop. 

 3.3 Landmark-fixing Normalization 

 Landmark-fixing normalization starts the same way as naïve normalization: before any further 

steps are taken, the image is corrected for tilt. Then, instead of finding the smallest rectangle which 

contains the face, our landmark-fixing normalizer finds a much more robust set of landmarks and crops 

the facial image based on those landmarks. Specifically, our landmark-based normalizer uses the left 

pupil, right pupil, and the tip of the nose as the robust landmarks to decide where the “face” lies. 

 

Figure 8: Landmark-fixing Normalization 

                                                           
7
There are many ways to interpolate pixels during a resize. We used the OpenCV1.1 default resize implementation. 

Meaning of the ratios          

1)      [     ) 

 The x-coordinate of the left pupil will be 

normalized to    , and the x-coordinate of the 

right-pupil will be fixed to  (    ) 

2)      [   ) 

The y-coordinate of the pupils will be     

3)      [      ) 

The y-coordinate of the nose tip will be  (    ) 

  
 

     
                   

 

       
  

Note: The origin is defined as the top-left corner 

of the black rectangle. Also recall that each input 

face determines   and  . 

Note:  
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  Note that the coordinates of the three red dots (left pupil, right pupil, and nose-tip) can be 

inferred from the given landmarks.   is the parameter which determines how far sideways from the eyes, 

with respect to the distance between the eyes, to consider the facial region.    is the parameter which 

determines how far above the eyes, with respect to the distance between the eyes and the nose, to 

consider the face. Finally,    determines how far below the tip of the nose, with respect to the distance 

between the nose tip and the eyes, to include in the face. Recall that since this is done after the tilt 

correction, we are guaranteed that the eyes have the same y-coordinate. 

 In effect, setting these three parameters fixes the locations of the two pupils. For instance, if I 

resize all of my faces to 200 by 200 pixel image, then I can guarantee that (for a given         ), the two 

eyes and will always be at the exact same pixel coordinates. I can even guarantee that the y-coordinate of 

the nose tip will be the same (but since the nose isn’t horizontally aligned I can’t make such a claim about 

its x-coordinate). It is this guarantee that makes landmark-fixing normalizers inherently better than the 

naïve normalizers. 

 3.4 Etching 

 One idea we used in this project which wasn’t based on any papers or other projects was the 

concept of etching. Traditionally, face recognition systems have modeled the 2D face as a rectangular 

grid of pixels. Not only is this a reasonable representation of how the face actually looks, but it also is 

very convenient as almost all image interchange formats store image dimensions based on a width and a 

height. The motivation behind etching was that a face, in two dimensions, isn’t really a rectangle, but 

rather more complex geometric figure with some smooth curves. Because it would be too difficult to 

model smooth curves, we decided to make an approximation and model the 2D face as a polygon. 

Specifically, the points 1-15, 56, 55, 54, 53, 60, 61, 62 (in that order) formed the circumference of our 22-
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sided face mask polygon. The motivation behind this was so that pixels that lie in the rectangle of your 

face, but not actually in your face (such as under your jawline) shouldn’t be fed into the face recognizer. 

 A true polygon model for a face would consider only the pixels inside the polygon. Although this 

would be an ideal mask, it would make the third criterion for normalization almost unattainable; there 

isn’t an easy way to resize arbitrary 22-sided polygons to have the same number of pixels. Thus, the 

closest we were able to get was by simply etching out the pixels of the rectangle which are outside of the 

polygon. In effect, we are not allowing the recognition learner to learn any information outside of the 

polygon. It’s important to note that the rectangular region from which points are etched is determined 

by the landmark-fixing normalization parameters         , and that the actual points which are etched 

out or left in are determined by the polygon mask. Note that because the polygon mask could be 

different for every face, there is no guarantee that if a given coordinate is etched out in one normalized 

facial image that it will be etched out in another. 

 

Figure 9: Polygon Mask with Etching (parameters                      ) 

 Although we didn’t realize it right away, it turns out that etching a pixel to the black color can 

have harmful side effects in the recognition stage. As stated at the end of the last paragraph, there is no 



16 
 

guarantee that a given pixel coordinate is etched out for a set of parameters, because every face polygon 

is different. Also, because the RGB components of black are very different from the components of usual 

skin tones, the recognition engine will discriminate against someone heavily for having a different etched 

circumference (as opposed to what’s actually inside the etched circumference). To prevent the 

recognizer from discriminating too heavily based on the etched out pixel values, we had another option 

to color the etched out pixels to the average skin color of the pixels in the face. This is to prevent a large 

difference in RGB values from biasing the recognition learner on the basis of the etch circumference. 

 

Figure 10: Polygon mask with Etching Variant (parameters                      ) 

 Because we had already implemented code which could determine whether a pixel was inside or 

outside a polygon (specified by its circumference pixels), we thought about dealing with another 

normalization issue: facial expression. If we were able to etch out the pixels inside the mouth of the facial 

image, this would normalize open mouth pixels, closed mouth pixels, and teeth pixels! Since we’re given 

the pixel coordinates of the circumference of the mouth in the facial landmark points file, we were able 

to implement this feature as well. Shown below is an image with the pixels inside the mouth polygon, or 

outside the face polygon, etched out to the average skin color. 
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Figure 11: Etching out the mouth to eliminate variation in facial expression (parameters                      ) 

 Notice that all of these “improvements” will not necessarily help the recognizer; these are merely 

options we are incorporating into the normalizer so that we can choose which set of parameters give us 

the best results. Although I’m helping achieve the first normalization criterion (making all images of the 

same person look similar), I might be hurting the second normalization as I might be etching out 

discriminating features between people. For instance say one target has a distinctive mark on the upper 

left lip which could potentially be used to recognize him. This etching feature would throw away that 

feature before the recognizer could even make use of it, potentially hurting the performance of the 

overall program. 

 3.4.1 Point-in-Polygon Algorithms 

Some of the more interesting algorithms in this project were the point-in-polygon 

algorithms. If I drew the three vertices of a triangle, and then plotted a fourth point, a human 

could easily tell me whether that point lies in the polygon defined by the first three points by 

visual estimation. Now instead if I gave you   coordinates (of the form (x,y)) which defined some 

arbitrary (not necessarily convex)  -gon and then gave you a probe coordinate, i t would be 

slightly harder to determine whether the probe point lies inside or outside the polygon; a human 
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might draw out the polygon, plot the point, and use visual estimation from there. Since 

computers don’t have the skill of visual estimation, in order for us to implement the “etching” 

feature, we needed to code decision procedure to tell us whether a point is inside or outside a 

polygon. 

The first such algorithm uses an angle summation trick to see where a point lies relative 

to a polygon. Specifically, the angles in between the lines connecting the probe image and the 

vertices of the polygon sum to    if and only if the point lies within the polygon. 

 

Figure 12: Point-in-Polygon Algorithm #1 decides that the point is outside (LEFT) or inside (RIGHT)  

Note that the counter-clockwise angle,   (     , between one line (of slope   ) and 

another (of slope   ) is given by  

        (
     

      
) (3.3) 

Thus, by calculating the slopes between the probe coordinate and the vertices, the angle 

summation algorithm can usually determine whether or not the probe lies within the polygon 

defined by the vertices. Unfortunately, this algorithm doesn’t work whenever the vertices 

describe a concave polygon. Recall that a concave polygon is one in which at least one its angles 

exceeds   radians in measure. Specifically, the algorithm will treat a concave polygon as the 
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equivalent convex polygon of lesser vertices formed by extending back all obtuse angles until 

they are down to   radians. 

  

Figure 13: Point-in-polygon Algorithm #1 fails for concave polygons 

Since the polygon mask we used for a face is potentially concave (between the 

eyebrows), as is the mask for the mouth, the above algorithm didn’t cut it. The actual point-in-

polygon algorithm we used works by counting the number of intersections between the edges of 

polygon and an arbitrary ray shot out from the probe coordinate.  

  

Figure 14: Point-in-polygon Algorithm #2 counting intersections 
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If the number of intersections with the ray (shown to be horizontal, but can be of any 

orientation) is even, then the point is outside. Otherwise, the point lies inside the polygon. Note 

that this holds regardless of the concavity of the polygon. The only logic which we had to 

implement was determining whether a horizontal ray would intersect with a given edge. 

Pseudocode for that decision is shown below:  

 

 

 

 

 

 

 

 

 

 

Note: The code above doesn’t deal with vertical edges or horizontal rays that intersect exactly 

with a vertex. Those conditions must be special cased for the algorithm to work properly. 

3.5 Normalization Parameter Selection 

/* The edge in question has end-points (x1,y1), (x2,y2). 

Assume WLOG that y1<y2 

The point from which the horizontal ray is shot out (rightward) 

is at (x,y) 

*/ 

if (not (y1 < y < y2)) 

 then no intersection 

else 

/* Calculate the x-coordinate of the intersection of the 

horizontal line going through (x,y) by similar triangles */ 

 

x_intersect = x2 - ((x2-x1)*(y2-y)/(y2-y1)) 

 

/* If the ray shoots out rightward, then the intersection is 

only valid if it lies at an x coordinate larger than the point 

itself */ 

if (x_intersect > x) 

 then intersection 

else 

 no intersection 
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Based on the discussion of face normalization until now, there are six parameters which will 

determine how the normalized face will turn out given a facial image: 

Parameter Name Description Values it can take Notes 

Normalized Image Size Height and Width <Integer x Integer> Recall that by the third criterion 
for face normalization, all 
normalized images must have the 
same dimensionality. 

   Horizontal eye 
offset ratio 

[0, 0.5) See Figure 8 

   Above eye ratio [0, 1) See Figure 8 

   Below nose tip ratio [0,     ) See Figure 8 

ETCH Whether the facial 
polygon mask 
should be used 

{0, 1, 2} 0- Do not use any polygon mask 
1- Mask and etch to black 
2- Mask and etch to average color 

KEEP_MOUTH Whether the mouth 
should be etched 
out or not 

{0, 1} 0- Keep the mouth 
1- Etch out the mouth and fill in 
whatever color specified by ETCH 

Figure 15: Normalization Parameters 
 

Note: In the interest of time, we never adjusted the Normalized Image Size parameter, but fixed 

it permanently to be 80 by 60 pixels (width by height). 

3.5.1 Manual Hill Climbing 

Although it’s nice to have parameters to play with, how can we determine what set of 

parameters are optimal for face normalization? In mathematical analysis, one might come up 

with a numeric rubric function of the six parameters and solve for relative maxima with respect 

to the parameters. In machine learning, people might solve parameter selection problems by 

writing a gradient ascent variant; such a program would try a set of parameters, score how well 

those settings performed, and make incremental changes to the parameters until the score stops 

improving. Regardless, it’s a common theme that we needed to be able to score a set of 

parameters; otherwise we can’t even decide if one set of parameters is better or worse than 

another! 
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Once we designed a method to assign a grade to a set of parameters, we can manually 

search through space of parameter combinations (making changes which we think would 

improve the score based on past results) until we find a parameter set that’s good enough. This 

process is much like gradient ascent (or hill climbing), except that we would do it manually 

instead of writing a program to do the searching. But, before we can do this, we must first come 

up with a way to score a parameter set. 

3.5.2 Testing Database 

The only way to score a normalization parameter set is to see how it performs. 

Unfortunately, judging how well normalized faces matched the three criterion set forth is very 

subjective. Thus, we tested the performance of normalized images by seeing how well our 

recognition learner would perform on them. This is preferable for two reasons: first, grading a 

recognition engine is much more objective and quantitative, and second because this is a true 

score because this is indeed what the normalization process will be used for. Unfortunately, this 

meant that we would need to code up a recognition learner before we could proceed with 

testing and scoring. The learner which we implemented to help us decide this was the Single-

Target PCA Nearest Neighbor classifier8, as it was the easiest to get off the ground. 

Even with a recognition engine coded, we still needed a test set on which to run the 

normalization and recognition. To come up with this set, we (manually) crawled the Facebook 

profiles of nine of our friends and found a total of 92 pictures of them in various poses. We 

tagged these pictures, normalized them with the given parameter set, and then scored that set 

                                                           
8
 PCA discussed in Section 5.3, Nearest Neighbor discussed in Section 5.6.1, and the results in 5.7.1 
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based on how well the PCA-NN classifier performed9. More specifically we used four metrics to 

gauge how well a given performed of parameters did on the testing set: 

1) Average correct NN-confidence10 

2) Accuracy with one guess 

3) Accuracy with top two guesses 

4) Accuracy with top three guesses 

Before looking at the numbers, consider the actual problem at hand: we are trying to 

classify probe images amongst 9 different targets. Just by random guessing, one would expect 

the one-guess accuracy to be about 11.11% (10/92), two-guess to be roughly 22.22% (20/92), and 

three-guess to be around 33.33% (31/92).  

 3.5.3 Data 

 All in all, we tested 98 parameter sets and scored them based on the four metrics above. 

Because we had four metrics by which to grade a parameter set, we didn’t come up with one 

universal “best set of parameters,” but rather got a feel as to which parameter combinations 

tend to work well with each other. Recall that out of the six parameters, namely image size, 

  (abbreviated HORIZ),    (abbreviated ABOVE),    abbreviated (NOSE), KEEP_MOUTH 

(abbreviated M), and ETCH (abbreviated E), we fixed the image size leaving 5 variable 

parameters. 

Here is some data which we obtained by using testing the Single-Target PCA + NN 

classifier (with various parameter combinations) on the testing set of Facebook pictures: 

                                                           
9
 How exactly normalization and the PCA classifier work together is discussed in Section 5.3 

10
 NN-confidence is discussed in 5.6.1 
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M E ABOVE HORIZ NOSE CONF TOP1 TOP2 TOP3 

0 2 0.10 0.20 0.45 16.0422% 37/92 47/92 60/92 

1 2 0.10 0.20 0.45 15.822206% 36/92 48/92 55/92 

1 0 0.10 0.20 0.45 15.821445% 36/92 48/92 55/92 

1 1 0.10 0.20 0.45 15.816855% 36/92 48/92 55/92 

1 0 0.15 0.20 0.45 15.720995% 38/92 49/92 56/92 

0 2 0.15 0.20 0.45 15.689998% 37/92 49/92 65/92 

Figure 16: Scoring Metrics on Single-Target PCA + NN for Top 6 (Sorted based on Average Correct NN-Confidence) 

 

M E ABOVE HORIZ NOSE CONF TOP1 TOP2 TOP3 

1 1 0.10 0.25 0.50 14.094015% 42/92 50/92 55/92 

1 1 0.15 0.20 0.45 15.438646% 39/92 51/92 56/92 

0 1 0.10 0.20 0.40 14.237755% 39/92 47/92 55/92 

1 0 0.15 0.20 0.45 15.720995% 38/92 49/92 56/92 

1 2 0.15 0.20 0.45 15.642862% 38/92 49/92 56/92 

0 2 0.10 0.20 0.50 15.002675% 38/92 50/92 61/92 

Figure 17: Scoring Metrics on Single-Target PCA + NN for Top 6 (Sorted based on one-guess accuracy) 

  To see a how all 98 parameter sets performed, see Appendix A11. 

  3.5.4 Results 

 This data we collected in this step actually served two purposes. First, the intended 

purpose, which was to give us indicators as to which parameter sets performed well, and which 

didn’t. Second, this gave us a benchmark performance level for Single-Target PCA and Nearest 

                                                           
11

 Appendix A has an additional column titled “SKIP.” This is discussed in Section 4.3. 
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Neighbor. In a way, his helped score both individual parameter sets as well as the entire PCA 

classification algorithm. 

 Before getting into which parameter sets we decided were the most-fitting, consider the 

big-picture results which we had already achieved: amongst nine targets, we were able to 

recognize the correct target (with one guess) 42.7% of the time! Furthermore, we had another 

parameter set whose three-guess accuracy was 70.6% (67/92 correctly classified test targets). 

Anyway, now that we had done all of this testing, the goal was to select the top 

parameter sets and forget about the rest. By sorting the results based on the four metrics, we 

concluded that the following 5 parameter sets worked pretty well12 and would be the only sets 

used for any further testing: 

M E ABOVE HORIZ NOSE CONF TOP1 TOP2 TOP3 

0 2 0.10 0.20 0.45 16.0422% 37/92 47/92 60/92 

1 2 0.10 0.20 0.45 15.822206% 36/92 48/92 55/92 

0 2 0.15 0.20 0.45 15.689998% 37/92 49/92 65/92 

0 1 0.10 0.20 0.50 13.791333% 35/92 53/92 62/92 

1 1 0.10 0.25 0.50 14.094015% 42/92 50/92 55/92 

1 1 0.15 0.20 0.45 15.438646% 39/92 51/92 56/92 

Figure 18: PCA-proven highest performing parameter sets chosen for normalization 

The above six parameter sets are the only parameter sets used in any further testing, 

because they experimentally proved to perform the best. 

Section 4: Illumination 

                                                           
12

 These parameter sets were chosen subjectively by also looking at the data presented in Figures 16 and 17, as well 
as sorting the results by two-guess and three-guess accuracy. 
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 4.1 The Problem 

One problem which image processing tools across all disciplines try to fight is that of illumination 

variance. We mentioned that normalized facial images of the same person should look similar, even in 

different settings (such as under different lighting). Unfortunately, this turned out to be difficult to 

achieve; we needed to find another way to combat the illumination problem. Specifically, the problem is 

that the pixels in two facial images of different people but in the same lighting are often more similar 

than the pixels in two facial images of the same person but in different lighting. In a sense, the 

recognition engine would be learning what kind of lighting the picture was taken in, not what the 

person’s face looks like. The underlying reason for this is that in high ambient light, the pixels in a picture 

tend to approach white (RGB value of <255,255,255>) whereas in little ambient light the pixels tend to 

approach black (RGB value of <0,0,0>). Because these numbers are so far apart, pixel based learners have 

trouble finding real facial features under the mask of highly varying illumination. 

 

Figure 19: Effect of varying illumination on the face 

 Another similar issue is that of color balance. Different cameras use different ratios of Red, 

Green, and Blue when producing images. Fortunately, we were able to deal with this easily by grayscaling 

the images before working with them. Dealing with illumination, however, wasn’t so easy.  
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 4.2 MATLAB Illumination Package 

Before we dove into tackling the illumination problem, we wanted to first see whether or 

not variance in illumination was even affecting our results. In other words, if we were somehow 

to eliminate this problem, would our results improve significantly? It was brought to our 

attention that MATLAB had a built in Illumination package called INFace1314 which had the ability 

to normalize all images for illumination. If we could run this tool in the pre-processing before 

running our recognition software, then we’d be able to tell how our recognizer would do in a 

perfect world with no illumination. If the results were much better, then we’d know that 

illumination was indeed an issue we need to deal with. When we did this, the results came back 

inconclusive. We found lower (on average) recognition rates. 

M E ABOVE HORIZ NOSE CONF TOP1 TOP2 TOP3 

0 2 0.10 0.20 0.45 14.61889% 33/92 46/92 52/92 

1 2 0.10 0.20 0.45 15.65333% 34/92 47/92 55/92 

0 2 0.15 0.20 0.45 15.28442% 31/92 45/92 58/92 

0 1 0.10 0.20 0.50 13.973133% 34/92 51/92 58/92 

1 1 0.10 0.25 0.50 13.289593% 35/92 45/92 55/92 

1 1 0.15 0.20 0.45 14.95732% 35/92 48/92 58/92 

Figure 20: Results when pre-processed with MATLAB's INFace Illumination correction package (contrast with Figure 18) 

However, when we looked at what MATLAB had done, it seemed as though the illumination 

correction didn’t adjust the pictures very much. Because we were unsure as to how to interpret these 

results, we continued our search to solve the illumination problem. 

                                                           
13

 INFace was created by Vitomur Struc from the University of Ljubljana in 2009. 
14

 The tool uses a single-scale-retinex algorithm with wavelet-based normalization tested on 128 by 128 pixel 
images. 
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4.3 Quick Fixes 

After reading a few papers about illumination, we found that people had suggested two main 

“quick fixes” to this problem. We tried these quick-fixes, and found that the first helped greatly, but the 

second hurt out performance significantly. 

 4.3.1 Skipping Eigenvectors 

 The first quick-fix was specific to dealing with illumination in PCA-reduced images. 

Because our classifier was a PCA classifier, this fix was applicable. Specifically, the paper15 

suggested skipping the first three eigenvectors (principle components) when calculating the 

nearest neighbor in the recognition stage. The motivation behind this is that because PCA places 

the most prominent components with the highest eigenvalues, and since illumination is indeed 

very prominent amongst facial pictures16, by eliminating the first few principle components 

(dubbed “illumination components”) we are left working with only the true face data. We played 

around the number of eigenvectors to skip (as shown in the SKIP column of Appendix A), and 

found indeed that skipping three worked the best for us as well. All the results shown up until 

now were calculated including this fix. 

 4.3.2 Pixel Logarithms 

 The second fix, which was brought to our attention at the CyLab, was to take a logarithm 

of the pixels as a pre-processing step before working with them. The motivation behind this was 

that because of the decreasing slope of the logarithm function, true lower-valued pixels would be 

preserved whereas higher-valued (illuminated) wouldn’t appear as different (in the logarithm 

                                                           
15

 See Reference #1 
16

 Illumination will only be a major component if PCA is trained on a training set which has illumination variance. 
More about how we trained our PCA in Section 5.3.2 
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domain). When applying this transform, we achieved terrible results, with a one-guess 

recognition rate of no higher than 26/92 (as compared to the 42/92 originally) for any parameter 

set.  

 4.4 Artificial Illumination 

  4.4.1 Motivation behind artificial variants 

 One of the new ideas which we came up with during this project was the idea to 

construct artificially illuminated variants of facial images. The motivation behind this was two-

fold. First, having multiple images of the same person could help our recognition learner17. 

Second, if we were able to realistically construct how the target face might look in different 

lighting, we would be able to solve the illumination problem! 

 4.4.2 Looking ahead: Linear Dependence 

 It was mentioned that having multiple samples of one target could potentially help the 

recognition engine. In our project, the Fisherface recognizer (built on LDA) was able to benefit 

from having many sample images of one target, but only if the samples were linearly 

independent from one another18. One naïve way to construct artificial variants would be by 

multiplying all of the pixels in the image by a parameter  . If    , the image would become 

brighter, and if     the image becomes darker. Clearly, these variants are not linearly 

independent; in fact no two variants are linearly independent from each other. Another naïve 

idea would be to add constants {              } to all the pixels to generate   variants. 

However, no three of those variants will be linearly independent, as shown below. 

                                                           
17

 In fact, LDA (the second recognition learner we used) can only work if there is more than one sample per target 
image. More about LDA in Section 5.4 
18

 See Section 5.4.1 
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 Recall that three vectors           are linearly independent if and only if there exist no 

constants     such that        . If each image has   pixels (or dimensions), and       

correspond to the first three variants, then   (  
  

  
)    (

  

  
) shows that the images are 

not linearly independent. 
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(4.1) 

 Thus, we had to come up with a clever way to generate artificially illuminated variants 

whose pixel values are linearly independent from one another. 

 4.4.3 Gradient based Illumination 

Our initial idea was to have a variable location light-source which would affect how the 

pixels in the facial image were illuminated. This would be quite accurate, because generally light 

can be modeled as coming from a point source. Unfortunately, we would need to be able to 

render the face in three dimensions and build a ray tracer, both of which were too difficult to 

implement this semester. Instead, we generated gradients which varied spatially throughout the 

image which would affect how a pixel “lit up.” One such gradient had higher values in the left 

than the right, which would mean that there is a light source coming from the left of the picture. 

For illustrative purposes, a simple “left-high” gradient matrix is detailed below: 

[
 
 
 
 
 
      
      

    
    

     
     

      
      

    
    

     
     

      
      

    
    

     
     ]

 
 
 
 
 

 

By performing a saturated element-wise multiplication between the above gradient 

matrix and the input facial image, we generated an illuminated version of the facial image which 



31 
 

would be linearly independent with other illuminate versions generated by different gradients. 

The saturated element-wise multiplication calculates a cell-by-cell product for each matrix 

element and rounds the value to the nearest integer in the range [       (RGB value range). 

Formally, 

 
       {

             
 ⌊      ⌋            

 
(4.2) 

 By choosing different orientations for the gradient matrices and by varying the magnitude of the 

values in the gradient matrix (corresponding to “how strong is the light source”), were able to 

come up with 40 artificially generated, linearly independent, samples per target image. 

 

Figure 21: Five artificially generated illumination variants. The first simulates a light source from the top, the second 
from the left, the third from the bottom, the fourth front-on, and the fifth from far away. The original image was the 
one pictured in Figure 4. 

One caveat about this gradient-based artificial illumination is that the input facial image 

must contain very little other than the face itself. Because the gradient will adjust pixel values 

throughout the image, if the actual face only occupies a small portion of the image then there 

will be little differences in the variants. To combat this, we first ran face detection on a new 

target, cropped the image to include facial region, and then created the illumination variants. 

Note that this illumination pre-processing step took place before the tilt correction and 

polygon cropping stage; the 40 target facial images for each individual were generated and then 
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each illuminated variant was normalized. However, because the facial landmarks lie in the same 

pixel locations in each image (regardless of illumination), the face detector need only run once 

per individual. Then, these normalized variants were passed to our two multi-target recognition 

learners (namely PCA+SVM and Fisherfaces). The results of this are discussed in Sections 5.7.2 

and 5.7.3. 

Section 5: Face Recognition 

 5.1 What is Face Recognition? 

 Recognition, in our case, is the classification problem of determining which target sample most 

closely matches the probe facial image. Throughout this section, we’ll discuss three different algorithms 

and optimizations for making this decision. These algorithms will perform the same three-step 

procedure: 

1) Reduce the dimensionality of each target image, and tag the new dimensions with an 

identifier for who that image is a picture of. 

2) Reduce the dimensionality of the probe image. 

3) Pass the set of tagged points in the reduced dimensionality space, as well as the reduced 

probe image, into a classifier. 

The first algorithm reduced the dimensionality using Single-Target PCA, and then applied the 

Nearest Neighbor classifier. The second algorithm reduced the dimensionality using Multi-Target PCA, 

and then applied an SVM classifier. The third algorithm reduced the dimensionality using the Fisherface 

algorithm, and then applied a Nearest Neighbor classifier. The results of these three different recognition 

algorithms are discussed in Section 5.7. 

5.2 Dimensionality Reduction 
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The concept of dimensionality reduction is crucial to many subjects in engineering fields because 

the complexity of a problem can increase exponentially when dealing with more dimensions. This 

phenomenon, given the nickname “the curse of dimensionality,” forces higher-order systems to be 

reduced before any analysis can be performed. In other words, it’s often useful to compress points in 

higher dimension space down to a lower dimension space, even at the cost of some information. This 

idea is known as dimensionality reduction. 

Assume we had an algorithm which could reduce the dimensionality of a given set of data (and 

subsequently reconstruct the data) without losing too much information. It’s obvious how such a tool can 

be used for something such as file compression. What’s more interesting is how we can use a reduction 

tool for classification. 

If we open up the black box of a dimensionality reduction tool, we see that it has to intelligently 

select which pieces of information it keeps, and which it doesn’t. Consider a reduction tool which reduces 

points in    space to  
 

  space by simply selecting the first half of the coordinates, and reconstructs the 

original points by appending 
 

 
 zeros to the reduced point). Although this will indeed reduce 

dimensionality, if the latter half of the original coordinates were all non-zero, then we’ve lost a lot of 

data. A good reduction tool would need to reformat the data and keep only the most critical features 

from the data set. Thus, we can use a dimensionality reduction tool as a feature selector. This is how it 

helps in our classification problem. 

Consider a probe facial image and a set of target facial images which the probe will be matched 

against. Before reduction, the images may contain thousands of pixels (dimensions) of data. After 

reduction, the images may be reduced to far fewer dimensions representative of features (i.e. {“no-

glasses”, “dark skin tone”, “no facial hair”}). Now, working in this reduced dimension space where each 

dimension means much more than a single pixel, we can pass the tagged targets and probe to a classifier 
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and hope to achieve better results. This is the inspiration behind face recognition with dimensionality 

reduction. 

We used two dimensionality reducers: one built on PCA and the other on LDA. Although there 

are dimensionality reducers which take into account soft biometrics (such as the “hair color” and 

“glasses”), the ones we used found features which are harder to describe in English. Instead PCA finds the 

features corresponding to the strongest numerical principal components, and LDA finds the features 

which maximize the differences between the targets. 

5.3 PCA 

Principal component analysis (PCA) is one of the most common dimensionality reduction 

algorithms with a wide variety of uses. We don’t discuss the details of the actual algorithm itself here 

(PCA is a very well-known algorithm, one good explanation of it can be found in Reference #3), but 

instead discuss our implementation and training set. PCA works by finding the top eigenvectors of the 

covariance matrix of the training data (after mean subtraction) corresponding to the highest eigenvalues. 

If you use more eigenvectors, you achieve a higher reconstruction ratio at the expense of lower 

compression. Our program had a hard-coded reconstruction ratio of 0.95, yielding between 27 and 34 

eigenvectors [reduced from 4800 pixel image]. This reconstruction ratio was suggested by members at 

CyLab. We implemented the entire PCA routine (mean/eigenvector calculation, reconstruction, and 

reduction) in VC++ using OpenCV’s cvSVD routine for eigenvector calculations. 

 5.3.1 Training Database  

 The database which we used for training the PCA eigenvectors was given to us by the 

CyLab. Specifically, we were given 250 facial images (of arbitrary human faces) from the FRGC 

database which we trained on. Recall that because PCA would work to reduce normalized 
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images, we normalized these images (using the different settings) before running the PCA 

algorithm. 

 5.4 LDA 

 Linear Discriminant Analysis (LDA) is another well known algorithm for dimensionality reduction. 

The implementation of LDA is slightly more involved than PCA, and is described in the Fisherface paper 

(Reference #1). A key distinction between LDA and PCA is that the projections which LDA makes vary 

based on the targets to classify against. For PCA, the eigenvectors and means were calculated solely 

based on the training database. For LDA, the Wilson vectors are generated based on the database of 

targets. Practically, this means that anytime I added or deleted a target in the application, I would need 

to recalculate the Wilson vectors. We implemented, from scratch, a multi-class LDA reduction algorithm. 

The most computationally difficult part of this algorithm was an eigenvector calculation. There was no 

OpenCV routine which was capable of finding the eigenvectors of an asymmetric matrix, and because the 

Wilson vectors of LDA are the eigenvectors of such a matrix, we had to spawn MATLAB (with a script) to 

perform this one calculation. This was the only place in the application that ran in MATLAB. 

 5.5 Fisherfaces 

 Unfortunately, LDA requires the dimensionality of the input to be bounded by the difference 

between the number of targets and the samples per target. Because an image would typically have the 

dimensionality in the thousands (and we were running on less than 100 targets), we weren’t able to use 

LDA as is. Instead, we performed PCA reduction on the faces first and then fed those results to our linear 

discriminator. This process of combining PCA and LDA on facial images is known as Fisherface 

recognition. 

 5.6 Classifiers 
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  5.6.1 Nearest Neighbor Classifier 

 The nearest neighbor classifier takes a set of target points in    and another probe point 

in    and simply finds which of the target points has the minimum Euclidean distance to the 

probe point. The confidence of any given match was given as the ratio of “inverse distance.” For 

example, if the probe image was 1 unit away from A, 4 units away from B, and 5 units away from 

C, then the confidences are: 

   
     

 
    

   
     

 
     

   
     

 
   

    ( )  
  

        
     ( )  

  

        
     ( )  

  

        
 

 5.6.2 SVM 

 We were also given, by CyLab, a linear kernel SVM classifier which we used in conjunction 

with the artificially generated illumination variants. However, the SVM classifier wasn’t able to 

give confidences with its selection, and only gave one selection (the top pick). 

 5.7 Final Results 

  5.7.1 Single Target PCA + NN 

The results of this are attached in Appendix A. The highlight was a maximum one-

guess recognition rate of 42.7% and three-guess recognition rate of 70.6% 

  5.7.2 Multiple Target PCA + SVM 
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M E ABOVE HORIZ NOSE CORRECTNESS PERCEN 

0 2 0.10 0.20 0.45 34/92 37.0% 

1 2 0.10 0.20 0.45 36/92 39.13% 

0 2 0.15 0.20 0.45 33/92 35.9% 

0 1 0.10 0.20 0.50 35/92 38.0% 

1 1 0.10 0.25 0.50 41/92 44.6% 

1 1 0.15 0.20 0.45 39/92 42.4% 

 

 We found that the multiple targets (artificially illuminated faces) with an SVM classifier 

had roughly the same performance as the single targets with a nearest neighbor classifier. The 

highlight was a 44.6% recognition rate. 

  



38 
 

 5.7.3 Fisherfaces 

M E ABOVE HORIZ NOSE CONF TOP1 TOP2 TOP3 

0 2 0.10 0.20 0.45 14.53832% 33/92 41/92 55/92 

1 2 0.10 0.20 0.45 14.19486% 32/92 43/92 54/92 

0 2 0.15 0.20 0.45 13.99008% 35/92 45/92 56/92 

0 1 0.10 0.20 0.50 13.30584% 37/92 50/92 60/92 

1 1 0.10 0.25 0.50 12.30449% 35/92 44/92 55/92 

1 1 0.15 0.20 0.45 13.62686% 35/92 44/92 55/92 

The highlight was that the maximum one-guess recognition rate was 40.2% by the third fourth 

parameter set. This same parameter set achieved a three-guess recognition rate of 65.2%, which 

was also the highest performance we saw from the Fisherfaces. 

 

Section 6: Entry Lookup 

 The final piece of the puzzle was retrieving information on a probe image once I knew who it was. 

This was implemented by running a background Perl script on an Andrew machine which would listen for 

requests. The protocol we defined had the script listen for an Andrew ID and spit back any information it 

could find on that individual. The information the script picked up was anything in the Andrew Directory 

(programmatically accessible via the finger utility). The Perl script was linked with the VC++ application 

through TCP/IP Socket communication. This simple 50-line script could be beefed up to scour the web, 

Facebook, and other information sources and provide a much more detailed description of the person. 

However, as the focus of the project was face recognition, we chose not to devote more time to the Entry 

Lookup stage. 
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Section 7: Computation and Application 

 7.1 DSK vs. PC 

 Our group, with permission from the instructors, did not use the DSK for any computation during 

this project. However, we did diagram which parts of the code could be run on the DSK and which would 

need to run on the PC. Note that the diagram below is specific for the Single-Target PCA + NN recognizer. 

Any computation that didn’t require OpenCV or eigenvector calculations could be thrown onto the DSK. 

In practice, it would make sense to do the training (PCA mean and eigenvectors) pre-runtime and simply 

download those values onto the DSK during runtime. 

  

Figure 22: DSK/PC split up 
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 7.2 GUI and Demo 

 The entire application we developed was written in VC++ (using VS2008). No MATLAB was used 

except for one eigenvector calculation19. During our demonstration, we had our program take a target 

picture of the students and faculty members, and then recognize them based on a different photograph. 

Although we didn’t take down exact statistics during the demonstration, we exhibited far better accuracy 

rates during the actual demonstration than on the testing data. This can most probably be explained 

because pictures on Facebook have a tremendous amount of pose and illumination variation, whereas 

during the demo all pictures were taken indoors and under similar circumstances. Note that all PCA 

training was done prior to demonstration. Some screenshots of the GUI follow: 

 

Figure 23: GUI Main Screen 

                                                           
19

 We found no way to find the eigenvectors of an asymmetric matrix in OpenCV (See Section 5.4). For that, we had 

to spawn a process to run “matlab –r …”. No MATLAB was used anywhere else in the application.  
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Figure 24: GUI Targets Screen 

Section 8: Schedule 

 We had set forth a schedule at the start of our project detailing when we would reach the various 

milestones of the project. Overall we kept to the schedule pretty well, finishing things earlier rather than 

later. One major deviation concerned face detection. Originally, we had planned on leaving out face 

detection and assuming that the input image was a pre-cropped face. However, since we received a face 

detection binary, we decided to incorporate the detection into our program. Another deviation was 

expediting the implementation of classifiers (such as minimum distance). Because we couldn’t actually 

select the normalization parameters without a functional classifier, we had to get the nearest neighbor 

classifier working much before the time we anticipated. 
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Date  Objective  

02/18  Have chosen a technology to implement the GUI  

02/25  Ability to talk to the Webcam, Entry Lookup Utility coded 

03/18  PCA Working. Ability to load a picture taken from the webcam, display 
in GUI, and send it to the DSK  

03/25  LDA Working. Can listen for feedback from the DSK matching the 
picture to a name (or andrew ID)  

04/08  Minimum Distance Detector working. Interface with Data Searching 
Utility. Can listen for and parse feedback in the form of <attribute, 
value> pairs from search utility and render them in GUI  

If we have time  Allow user to crop the face of the input image to select the face 

Figure 25: Original Schedule 

 The true schedule was something like the itinerary below (note that no work was actually done 

with the DSK): 

Date  Objective  

02/18  Chose VC++ (VS2008) to write the GUI. 

02/25  Entry Lookup Working. All Webcam driver issues were resolved.  

03/18  PCA Working, Minimum Distance Detector working. Normalization 
parameter selection was in process 

03/25  LDA Working (but buggy). Began research on Fisherfaces  

04/08  Interfaced properly with Entry Lookup Utility. Fixed bug with LDA and 
began testing with SVMLight. 

Rest of the time  UI Design and debugging 

Figure 26: Revised Schedule 

Section 9: Future Work 

 9.1 Multiple Face Recognition 
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 Would it be possible to process images with multiple faces? The first limitation is that the face 

detector only finds one face (at most) per image. However, we can build a multiple face detector given 

the single face Viola-Jones detector by repeatedly running the latter and etching out the discovered face 

until no more faces are found. This would could be used to perhaps identify groups of people and tag 

images on Facebook. 

 9.2 MACE and other learners 

 Although we touched on quite a few recognition algorithms, there are many that remain 

unmentioned. One set of learners are correlation-filter based classifiers, such as MACE. Another set are 

Bayesian learners. Implementing additional classifiers and comparing their performance, in the context of 

face recognition, to ones discussed before would be enlightening. 

 9.3 Soft Biometric Tagging 

 Soft biometrics are real, human features which can be extracted from an image. For instance, the 

eyebrow color and facial hair formations could be extracted from a facial image. Gender, to an extent, 

can be learned as well. By tagging each target with a set of soft biometric data, one might be able to 

increase accuracy. A very basic soft biometric learner might have a rule such as “never classify an 

individual with black eyebrows as an individual with blonde eyebrows, regardless of how similar the rest 

of the face is.” 

 9.4 Illumination Filtering 

 Although our group spent a great deal of time fighting illumination variance, one approach which 

we did not take was processing illumination in the frequency domain. Because illumination tends to 

manifest itself in the lower frequencies (relative to the frequency content of the rest of the face), it 

would make sense to high-pass-filter all the images before feeding them into the recognition learner. 
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 9.5 Facebook 

  9.5.1 Target Crawling 

 If we were able to improve the accuracy of the application, it would be an interesting tool 

which could be used to identify people in a crowd (that might potentially be your friends). In 

another application, the program would use the Facebook profile pictures of anyone who you 

have mutual friends with to identify an unknown person as a friend of a friend. 

 9.5.2 Entry Lookup Enhancement 

 One big restriction to the functionality of our project is that it can only lookup 

information for users in the Andrew Directory. Although it worked well for the demo, there are 

many ways that one could improve the Entry Lookup stage (Section 6). One highly structured, 

programmatically accessible, data source which we didn’t tap into is the information on 

Facebook (accessible through the Facebook API). By linking up with this API, we could not only 

bring the user’s graduating class and major, but also a list of their friends, hometown, and 

relationship status! 
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Appendix A: Performance of Single‐Target PCA + NN with variable parameters
h h l h h f f ( f ) l l f d hTOPx has the value 0<=y<=1 where y is the fraction of targets (out of 92) correctly classified in the top x guesses

H W M E ABOVE EYE NOSE SKIP CONFIDENCE TOP1 TOP2 TOP3
60 80 1 1 10 25 50 3 14.094015 0.456522 0.543478 0.597826
60 80 1 1 15 20 45 3 15.438646 0.423913 0.554348 0.608696
60 80 0 1 10 20 40 3 14.237755 0.423913 0.51087 0.597826
60 80 1 0 15 20 45 3 15.720995 0.413043 0.532609 0.608696
60 80 1 2 15 20 45 3 15.642862 0.413043 0.532609 0.608696
60 80 0 2 10 20 50 3 15.002675 0.413043 0.543478 0.663043
60 80 1 2 10 25 50 3 14.820762 0.413043 0.51087 0.608696
60 80 0 2 15 25 40 3 14.807936 0.413043 0.532609 0.652174
60 80 0 2 20 20 40 3 14.60041 0.413043 0.51087 0.608696
60 80 0 1 10 25 40 4 14.489232 0.413043 0.51087 0.608696
60 80 0 1 10 25 40 3 14.098663 0.413043 0.48913 0.586957
60 80 1 1 15 20 50 3 13.618634 0.413043 0.543478 0.597826
60 80 0 1 10 25 45 4 13.362928 0.413043 0.521739 0.554348
60 80 0 1 10 20 40 4 13.332061 0.413043 0.48913 0.586957
60 80 0 2 10 20 45 3 16.044223 0.402174 0.51087 0.652174
60 80 0 2 15 20 45 3 15.689998 0.402174 0.532609 0.706522
60 80 0 2 15 20 40 3 15.460188 0.402174 0.543478 0.630435
60 80 1 2 15 25 40 3 15.026397 0.402174 0.5 0.663043
60 80 1 1 10 25 45 3 14.376659 0.402174 0.48913 0.597826
60 80 1 2 15 20 50 3 13.874504 0.402174 0.532609 0.608696
60 80 0 2 15 20 50 3 13.858735 0.402174 0.532609 0.630435
60 80 0 1 15 20 40 3 13.855999 0.402174 0.48913 0.597826
60 80 1 2 10 20 45 3 15.822206 0.391304 0.521739 0.597826
60 80 1 0 10 20 45 3 15.821445 0.391304 0.521739 0.597826
60 80 1 1 10 20 45 3 15.816855 0.391304 0.521739 0.597826
60 80 0 2 10 20 40 3 15.270896 0.391304 0.5 0.619565
60 80 1 2 10 25 45 3 15.1637 0.391304 0.5 0.597826
60 80 1 1 10 20 50 3 15.066255 0.391304 0.576087 0.641304
60 80 1 2 10 20 50 3 15.017933 0.391304 0.554348 0.619565
60 80 1 0 15 25 40 3 14.827169 0.391304 0.5 0.641304
60 80 1 2 15 25 45 3 14.819914 0.391304 0.521739 0.586957



60 80 1 1 15 25 40 3 14.768444 0.391304 0.543478 0.619565
60 80 0 2 25 20 40 3 14.699147 0.391304 0.51087 0.619565
60 80 0 1 10 20 45 3 14.353811 0.391304 0.521739 0.597826
60 80 1 1 15 25 50 3 13.382205 0.391304 0.51087 0.619565
60 80 1 2 15 20 40 3 15.454376 0.380435 0.565217 0.652174
60 80 1 0 15 20 40 3 15.442279 0.380435 0.565217 0.652174
60 80 0 2 10 25 40 3 14.972031 0.380435 0.543478 0.663043
60 80 0 2 10 25 50 3 14.945505 0.380435 0.554348 0.641304
60 80 1 0 10 20 50 3 14.896721 0.380435 0.554348 0.619565
60 80 0 2 20 25 40 3 14.439614 0.380435 0.51087 0.608696
60 80 1 1 15 25 45 3 14.311139 0.380435 0.48913 0.597826
60 80 1 0 20 20 40 3 14.011296 0.380435 0.543478 0.576087
60 80 0 1 10 20 50 3 13.79133 0.380435 0.576087 0.673913
60 80 0 1 10 25 50 4 13.039233 0.380435 0.51087 0.597826
60 80 1 0 25 20 40 3 15.395019 0.369565 0.565217 0.641304
60 80 1 1 15 20 40 3 15.366336 0.369565 0.554348 0.652174
60 80 1 0 10 25 40 3 14.48655 0.369565 0.565217 0.641304
60 80 0 1 15 20 40 4 14.185993 0.369565 0.456522 0.565217
60 80 1 1 20 25 40 3 13.177512 0.369565 0.5 0.586957
60 80 1 1 20 20 40 3 13.160648 0.369565 0.48913 0.532609
60 80 0 2 25 20 45 3 14.01726 0.362637 0.527473 0.626374
60 80 1 0 20 20 45 3 15.13748 0.358696 0.48913 0.576087
60 80 1 2 10 20 40 3 14.774276 0.358696 0.543478 0.619565
60 80 1 0 10 20 40 3 14.771306 0.358696 0.543478 0.619565
60 80 1 1 10 20 40 3 14.763526 0.358696 0.543478 0.619565
60 80 0 1 10 20 50 4 13.615929 0.358696 0.576087 0.630435
60 80 0 1 10 20 45 4 13.603153 0.358696 0.456522 0.565217
60 80 0 1 15 20 45 3 13.521976 0.358696 0.5 0.576087
60 80 0 1 15 20 45 4 13.353715 0.358696 0.48913 0.576087
60 80 0 1 10 25 50 3 13.352289 0.358696 0.5 0.597826
60 80 1 1 25 20 45 3 13.434397 0.351648 0.527473 0.648352
60 80 1 1 10 25 40 3 14.455024 0.347826 0.554348 0.652174
60 80 1 2 10 25 40 3 14.442399 0.347826 0.554348 0.652174
60 80 0 2 20 20 45 3 14.252526 0.347826 0.48913 0.619565
60 80 1 0 15 20 50 3 13.650084 0.347826 0.521739 0.608696



60 80 1 0 15 25 45 3 13.544127 0.347826 0.48913 0.565217
60 80 0 1 10 25 45 3 13.219519 0.347826 0.478261 0.554348
60 80 1 1 20 25 45 3 11.577401 0.347826 0.445652 0.521739
60 80 0 2 20 20 50 3 13.796469 0.340659 0.516484 0.637363
60 80 1 0 25 20 45 3 13.722169 0.340659 0.571429 0.637363
60 80 0 2 15 25 45 3 14.721966 0.336957 0.51087 0.663043
60 80 1 0 10 25 45 3 14.180597 0.336957 0.51087 0.576087
60 80 0 2 25 25 40 3 14.033678 0.336957 0.478261 0.619565
60 80 0 2 15 25 50 3 14.469914 0.326087 0.521739 0.641304
60 80 1 0 25 25 40 3 13.751245 0.326087 0.434783 0.543478
60 80 1 1 25 20 40 3 13.552581 0.326087 0.456522 0.543478
60 80 1 0 10 25 50 3 13.175638 0.326087 0.456522 0.576087
60 80 1 1 20 20 50 3 13.422553 0.318681 0.483516 0.626374
60 80 0 2 10 25 45 3 14.863969 0.315217 0.467391 0.630435
60 80 0 2 20 25 45 3 13.806532 0.315217 0.456522 0.597826
60 80 1 1 20 20 45 3 12.325194 0.315217 0.5 0.576087
60 80 0 2 25 25 45 3 14.539412 0.307692 0.505495 0.604396
60 80 0 2 20 25 50 3 13.9494 0.307692 0.461538 0.604396
60 80 1 1 20 25 50 3 12.698827 0.307692 0.450549 0.56044
60 80 1 0 20 25 40 3 13.465286 0.304348 0.51087 0.630435
60 80 1 0 20 25 45 3 12.557279 0.304348 0.423913 0.543478
60 80 1 0 15 25 50 3 12.106322 0.282609 0.456522 0.5
60 80 1 0 20 20 50 3 13.026812 0.252747 0.43956 0.582418
60 80 1 0 25 25 45 3 12.604094 0.252747 0.395604 0.516484
60 80 1 1 25 25 40 3 12.413975 0.25 0.434783 0.51087
60 80 1 1 25 20 50 3 12.869922 0.24359 0.282051 0.461538
60 80 1 0 20 25 50 3 11.932245 0.21978 0.340659 0.428571
60 80 0 2 25 20 50 3 13.195505 0.217949 0.282051 0.461538
60 80 0 2 25 25 50 3 11.712359 0.205128 0.307692 0.346154
60 80 1 0 25 20 50 3 10.731205 0.141026 0.205128 0.282051
60 80 1 0 25 25 50 3 10.062284 0.128205 0.192308 0.269231


