15-410, Operating System Design & Implementation

Pebbles Kernel Specification
February 3, 2010

Contents

1 Introduction
1.1 OVEIVIEW o e

2 User Execution Environment

3 The System Call Interface
3.1 Invocationand Return.
3.2 Semantics of System Call Interface
3.3 SystemCall StubLibrary

4 System Call Specifications
4.1 OVEIVIEW o e e e
42 Task&ThreadIDs. e
4.3 Per-thread “runflag”.
4.4 LifeCycle. e
4.5 Thread Management
4.6 Memory Management.
4.7 Consolel/O. e
4.8 Miscellaneous System Interaction.

1 Introduction

This document defines the correct behavior of kernels fo6ihreng 2010 edition of 15-410. The
goal of this document is to supply information about beharather than implementation details.
In Project 2 you will be given a kernel binary exhibiting tedsehaviors upon which to build your
thread library; later, in Project 3, you will construct a ket which behaves this way.

1.1 Overview

The 410 kernel environment supports multiple address spaechardware paging, preemptive
multitasking, and a small set of important system calls.oAthe kernel supplies device drivers
for the keyboard, the console, and the interval timer.

2 User Execution Environment

The “Pebbles” kernel supports multiple independasks, each of which serves as a protection
domain. A task’s resources include various memory regiort “avisible” kernel resources
(such as a queue of task-exit notifications). Some versibtiedernel support file 1/0, in which
case file descriptors are task resources as well.

Execution proceeds by the kernel scheduliigeads. Each thread represents an
independently-schedulable register set; all memory esiees and all system calls issued by
a thread represent accesses to resources defined and owtieel thyead’s enclosing task. A
task may contain multiple threads, in which case all haveakguacess to all task resources.
A carefully designed set of cooperating library routines teverage this feature to provide a
simplified version of POSIX “pthreads.”

Multiprocessor versions of the kernel may simultaneously multiple threads of a single
task, one thread for each of several tasks, or a mixture.

When a task begins execution of a new program, the operatstgra builds several memory
regions from the executable file and command line arguments:

e A read-only code region containing machine instructions
e An optional read-only-constant data region
¢ A read/write data region containing some variables.

e A single automatic stack region containing a mixture of ables and procedure call return
information. The stack begins at some “large” address anchamg accesses typically
cause the kernel to add new pages, growing the region dowdtwaard the top of the data
region. Of course, if they collide, disaster will result.

In addition, the task may add memory regions as specifiedbetd memory added to a
task’s address space after it begins running is zeroeddeafoy thread of the task can access it.

Pebbles allows one task to create another though the use bbith() andexec() system
calls, which you will not need for Project 2 (the shell pragravhich we provide so you can
launch your test programs does use them).

3 The System Call Interface

3.1 Invocation and Return

User code will make requests of the kernel by issuing a tragruction (which Intel calls
a “software interrupt”) using thd NT instruction. Interrupt numbers are defined in
spec/ syscal | Qint.h.

To invoke a system call, the following protocol is followedf. the system call takes one
32-bit parameter, it is placed in tiéesi register. Then the appropriate trap, as defined in
syscal | _nums. h, is raised via thd NT x instruction (each system call has been assigned its
own | NT instruction, hence its own value ®j. If the system call expects more than one 32-bit
parameter, you should construct in memory a “system calkgticontaining the parameters,
with subsequent parameters occupying higher memory asiEseand place thaddress of the
packet in%esi . The diagram below shows a system call packet for #eall i ne() system call.

4(%esi)| buf
(Yoesi) | len

When the system call completes, the return value, if anypgibvailable in théeax register.

3.2 Semantics of System Call Interface

The 410 kernel verifies that every byte of every system cajliarent lies in a memory region
which the invoking thread’s task has appropriate permisgioaccess. System calls will return
an integer error code less than zero if any part of any argtimsanvalid. The kernetloes not

kill a user thread that invokes a system call with a bad arguroecombination of arguments.
No action taken by user code showdeer cause the kernel to crash, hang, or otherwise fail to
perform its job.

Many system calls have the property that there are multilggal invocations. For example,
thel s() system call takes a pointer parameter and a length pargni@t@ny given invocation
of the system call, either parameter or both might be invalide kernel is allowed to carry out
validity checks in any order which is convenient for it. Imse situations, a validity check can be
carried out “early” (before the kernel does a substantiabamt of work related to a system call)
or “late” (after some work has been done, perhaps includithg sffects visible to user code). In
general, both “early” and “late” checks for validity are &gas long as the way the system call
invocation fails matches the description of the systeminalreasonable way.

3.3 System Call Stub Library

While the kernel provides system calls for your use, it doesprovide a “C library” which
accesses those calls. Before your programs can get thel kemhe anything for them, you will
need to implement an assembly code “stub” for each system cal

Stub routinesnust be one per file and you should arrange for the Makefile infuastire you
are given to build them intbi bsyscal | . a (see theREADME file in the tarball). While system
call stubs resemble the trap handler wrappers you wrotergeét 1, they are different in one
critical way. Since your kernel must always be ready to respto any interrupt or trap, it
can potentially use every wrapper during each executiotainmust be linked (once) into the
kernel executable. However, the average user programrman@svoke every system call during
the course of its execution. In fact, many user programsatornly a trivial amount of code.
If you create one huge system call stub file containing thet¢odnvoke every system call, the
linker will happily append the huge .o file tvery user-level program you build and your “RAM
disk” file system will overflow, probably when we are tryinggoade your project. So don’t do
that.

While the project tarball contains a singlgscal | . ¢, full of blank system call stubs, this
is only a convenience so that you can link test programs befou have completed all your
stubs—as you write each stub, this file should get small@rewgntually being deleted.

When building your stub library, younust match the declarations we have provided in
spec/ syscal | . h in every detail. Otherwise, our test programs will not linfaanst your stub
library. If you think there is a problem with a declaration \wave given you, explain your
thinking to us—don't just “fix” the declaration. Any systeta#l entry code which doesn’t map
straightforwardly from a declaration isyscal | . h into code isn’'t a “genuine” stub routine and
shouldn’t be part of i bsyscal | . a—code specific to some application or facility should be & th
appropriate place in the directory tree.

Please remember your x86 calling convention rules. If youlifiyany callee-saved registers
inside your stub routines, you must restore their valuesreakturning to your caller. The kernel,
of course, always preserves the values of all user-mod#iedgiisters except when it explicity
modifies them according to the system call specifications.

4 System Call Specifications

4.1 Overview

The system calls provided by the 410 kernel can be brokerfivegroups, namely
e Life Cycle
e Thread Management
¢ Memory Management

e Console I/O

e Miscellaneous System Interaction

The following descriptions of system calls use C functionldeation syntax even though the
actual system call interface, as described in Se@iaa defined in terms of assembly-language
primitives. This means that student teams must write a systl stub library, as described in
Section3.3, in order to invoke any system calls. This stub library is bvéeable.

Unless otherwise noted, system calls return zero on suerekan error code less than zero
if something goes wrong.

One system call, hr ead_f ork, is presented without a C-style declaration. This is beegaus
the actions performed byhread_f ork are outside of the scope of, and manipulate, the C
language runtime environment. You will need to determineyfourself the correct manner
and context for invoking hread_f ork. It is not an oversight that hr ead f ork is “missing”
fromsyscal | . h, and you must not “fix” this oversight. If you feel a need toldee a C function
calledt hread_f or k() , think carefully about whether that is really the best naareHe function,
what parameters it should take, who needs to “see” the gear etc.

4.2 Task & Thread IDs

Task and thread identification numbers are monotonicatiseiasing throughout the execution of
the kernel. In other words, once there is a thread #35, thédkr@et be another thread #35 until
an intervening four billion threads have been created.

4.3 Per-thread “run flag”

The kernel provides a facility for a thread to suspend itsaken and for that execution to later
be resumed by another thread. Notionally, the kernel agtxivith each thread a “running flag”
(“run flag”), defined as a 32-bit word with the following sentias:

e A thread which has not yet been created, or which is “suffityetiead,” has no run flag,
so operations on the run flag will return an error,

e When created, a thread’s run flag begins with the value 0,

e Successfully setting a thread’s run flag to a negative valileswspend its execution
“immediately” (it will run no instructions in user mode).

e If a thread’s run flag is negative, setting it to a non-negati@ue will end suspension of
the thread’s execution.

Logically one mightimagine that each time a schedulingsleniis made the kernel examines
the run-flag value of each thread which is not blocked in aegystall and runs the “next one”
whose flag is non-negative. Modifying any thread’s run flagjdally invokes the scheduler (but
doesn't necessarily cause a thread switch). This logie@d\does not necessarily describe the
structure of any particular kernel implementation.

4.4 Life Cycle

This group contains system calls which manage the creatidmlastruction of tasks and threads.

e int fork(void) - Creates a new task. The new task receives an exact, colvem@nbf
all memory regions of the invoking task. The new task corgtaisingle thread which is a
copy of the thread invokinfjor k() except for the return value of the system call. df k()
succeeds, the invoking thread will receive the ID of the nagks thread and the newly
created thread will receive the value zero. The exit statas pelow) of a newly-created
task is 0.

Errors are reported via a negative return value, in whicle cessnew task has been created.

Some kernel implementations reject call§ tw k() which take place while the invoking
task contains more than one thread.

e thread._fork - Creates a new thread in the current task (i.e., the newdhsgashare all
task resources as described in SecfprThe value ofesi is ignored, i.e., the system call
has no parameters.

The invoking thread’s return value #eax is the thread ID of the newly-created thread; the
new thread’s return value is zerall other registers in the new thread will be initialized to
the same values as the corresponding registers in the @ddhr

Errors are reported via a negative return value, in whicleaas new thread has been
created.

Some kernel versions reject callsftor k() orexec() which take place while the invoking
task contains more than one thread.

e int exec(char *execname, char **argvec) - Replaces the program currently
running in the invoking task with the program stored in the flamedexecnanme. The
argumentr gvec points to a null-terminated vector of null-terminatedsirarguments.

The number of strings in the vector and the vector itself baltransported into the memory
of the new task where they will serve as the first and secondnaegts of the the new
program’snai n(), respectively. It is conventional that gvec[0] is the same string as
execnane andar gvec|[1] is the first command line parameter, etc. Some programs will
behave oddly if this convention is not followed.

Reasonable limits may be placed on the number of argumaeatta thser program may pass
toexec(), and the length of each argument.

The kernel does as much validation as possible otkee() request before deallocating
the old program’s resources.

On success, this system call does not return to the invokingram, since it is no longer
running. If something goes wrong, an integer error codetless zero will be returned.

Some kernel versions reject calls ¢gec() which take place while the invoking task
contains more than one thread.

e void set status(int status) - Sets the exit status of the current taslstat us.

e voi d vani sh(voi d) - Terminates execution of the calling thread “immediately.the
invoking thread is the last thread in its task, the kernelldeates all resources in use by
the task and makes the exit status of the task available tpatent task (the task which
created this task usirfgr k()) viawai t () . If the parent task is no longer running, the exit
status of the task is made available to the kernel-launcimét task instead.

If the kernel decides to kill a thread, the effect should béodews:

— The kernel should display an appropriate message on theleons

— If the thread is the sole thread in its task, the kernel shalddhe equivalent of
set status(-2),

— The kernel should perform the equivalentvahi sh() on behalf of the thread.

Thevani sh() of one thread, voluntary or involuntary, does not cause #radd to destroy
other threads in the same task.

e int wait(int *status_ptr) -
Collects the exit status of a task and stores it in the integferenced byt at us_ptr.

If no error occurs, the return value wéi t () is the thread ID of theriginal thread of the
exiting tasknot the thread ID of the last thread in that task/tmi sh() . This should make
sense if you consider hofror k() andwai t () interact.

Thewai t () system call may be invoked simultaneously by any number i&fatifs in a
task; exited child tasks may be matchedmo t () 'ing threads in any non-pathological
way. Threads which cannot collect an already-exited clagtt tvhen there exist child tasks
which have not yet exited will generally block until a chilsk exits and collect the status
of an exited child task. However, threads which will defilyiteot be able to collect the
status of an exited child task in the future must not bloclke¥er; in that caseyai t () will
return an integer error code less than zero.

The invoking thread may specifys at us _ptr parameter of zeroNULL) to indicate that
it wishes to collect the ID of an exited task but wishes to igrthe exit status of that task.
Otherwise, if thest at us_ptr parameter does not refer to writable memawi t () will
return an integer error code less than zero instead of ¢oifpa child task.

e void task_vanish(int status) - Causes all threads of a taskuani sh(). The exit
status of the task, as returned v t () , will be the value of thet at us parameter.

The threads musvani sh() “in a timely fashion,” meaning that it iswot ok for
t ask_vani sh() to “wait around” for threads to complete very-long-runnorgunbounded-
time operations.

4.5 Thread Management
e int gettid() - Returns the thread ID of the invoking thread.

e int yield(int tid) - Defers execution of the invoking thread to a time determiine
by the scheduler, in favor of the thread with IDd. If tid is -1, the scheduler may
determine which thread to run next. The only threads wholedwding should be affected
by yi el d() are the calling thread and the thread thatiisl d() ed to. If the thread with
ID tid does not exist, is awaiting an external event in a systemscal as readline() or
wait(), or has been suspended via a system call, then areinéegr code less than zero is
returned. Zero is returned on success.

e int cas2i_runflag(int tid, int *oldp, int evl, int nvl, int ev2, int nv2) -

Performs an atomic “Compare And Swap” operation on the rundfahreacdt i d. Before
the system call returns to the thread which invoked it, tHiofang will happen insome
order (the order is not fully specified and you may not assunsealways the same).

— The thread’s run-flag value before the system call is copeti¢ word addressed by
ol dp;

— If the thread’s run-flag value is equal to the vakel, the run-flag value is set to
the valuenvl; otherwise, if the thread’s run-flag value is equal to thaigalv2, the
run-flag value is set to the value?2.

— If the thread’s run-flag value changes, its scheduling sthtanges accordingly (see
below).

The in-kernel operations and effects of multiple invocasioof cas2i _runfl ag() are
atomic with respect to each other, but this atomicity dagextend to modifications made
to non-kernel memory.

An integer error code less than zero is returned if the pojpaeameter is invalid, if a thread
attempts to manipulate the run-flag value of a nonexisteaath or if a thread attempts to
suspend the execution of any thread other than itself. Isetbases the target thread’s run-
flag value is unchanged. Note that different kernel impletaigons may check for these
violations in different orders, and some checks may be y2anl “late” (see SectiorB.2).

Successful changes to the run-flag value affect scheduinigscribed in Sectiof.3. The
effects ofcas2i runfl ag() are “immediate” in the sense that a thread which is suspended
stops running, and a thread which is allowed to run may bagining, before the system
call completes.

Note that the particular atomic compare-and-swap perfdrbyecas2i _runfl ag() is not
the same as the one performed by @MXCHG3B instruction.

e unsigned int get_ticks(void) - Returns the number of timer ticks which have
occurred since system boot.

e int sleep(int ticks) - Deschedules the calling thread until at leastks timer

4.6

4.7

interrupts have occurred after the call. Returns immediatet i cks is zero. Returns
an integer error code less than zeroiitks is negative. Returns zero otherwise.

Memory Management

i nt newpages(void *base, int |en) - Allocates new memory to the invoking task,
starting atbase and extending for en bytes.

new_pages() will fail, returning a negative integer error code pidise is not page-aligned,
if | en is not a positive integral multiple of the system page sizany portion of the region
already represents memory in the task’s address space ifelv memory region would
be too closé to the bottom of the automatic stack region, or if the opampgystem has
insufficient resources to satisfy the request.

Otherwise, the return code will be zero and the new memorliminediately be visible
to all threads in the invoking task.

i nt renmove_pages(void *base) - Deallocates the specified memory region, which must
presently be allocated as the result of a previous calktepages() which specified the
same value obase. Returns zero if successful or returns a negative integieiréacode.

Console I/O

char getchar() - Returns a single character from the character input stréfime input
stream is empty the thread is descheduled until a charaxtavailable. If some other
thread is descheduled orr eadl i ne() orget char (), then the calling thread must block
and wait its turn to access the input stream. Charactergpsed by thget char () system
call should not be echoed to the console.

int readline(int len, char *buf) - Reads the nextline from the console and copies
it into the buffer pointed to bjuf .

If there is no line of input currently available, the callittyyead is descheduled until one
is. If some other thread is descheduled areadl i ne() or aget char (), then the calling
thread must block and wait its turn to access the input strééme length of the buffer is
indicated byl en. If the line is smaller than the buffer, then the complete limcluding the
newline character is copied into the buffer. If the lengthhd line exceeds the length of
the buffer, onlyl en characters should be copied iritof . Available characters should not
be committed intduf until there is a newline character available, so the usealwmsnce
to backspace over typing mistakes.

Characters that will be consumed by @adl i ne() should be echoed to the console as
soon as possible. If there is no outstanding call ¢adl i ne() no characters should
be echoed. Echoed user input may be interleaved with outpaittal calls toprint ().

1Two pages is too close. Other values might be too close also.

9

4.8

Characters not placed in the buffer should remain availadlether calls tar eadl i ne()
and/orget char () . Some kernel implementations may choose to regard chasagtech
have been echoed to the screen but which have not been placea user buffer to be
“dedicated” tor eadl i ne() and not available tget char () .

The readline system call returns the number of bytes copiamithe buffer. An integer
error code less than zero is returneduf is not a valid memory address,hfif falls in a
read-only memory region of the task, ot in is “unreasonably” largé.

int print(int len, char *buf) - Printsl en bytes of memory, starting &uf , to the
console. The calling thread should block until all charecteave been printed to the
console. Output of two concurrepti nt () s should not be intermixed. Ifen is larger
than some reasonable maximum obuff is not a valid memory address, an integer error
code less than zero should be returned.

Characters printed to the console invoke standard newliaekspace, and scrolling
behaviors.

int set_termcolor(int color) - Sets the terminal print color for any future output to
the console. Itol or does not specify a valid color, an integer error code less #eao
should be returned. Zero is returned on success.

int set_cursor_pos(int row, int col) - Setsthe cursor to the locationow, col).
If the location is not valid, an integer error code less tharois returned. Zero is returned
on success.

int get _cursor_pos(int *row, int *col) - Writes the current location of the cursor
to the integers addressed by the two arguments. If eithenaegt is invalid, an error code
less than zero is returned and the valuebabh integers are undefined. Zero is returned on
success.

Miscellaneous System Interaction

int I's(int size, char *buf) - Fills in the user-specified buffer with the names of
executable files stored in the system’s RAM disk “file systeththere is enough room
in the buffer for all of the (null-terminated) file nameasd an additional null byte after
the last filename’s terminating null, the system call willura the number of filenames
successfully copied. Otherwise, an error code less thamigaeturned and the contents
of the buffer are undefined. For the curious among you, tresesy call is (very) loosely
modeled on the System §ét dent s() call.

void halt() - Ceases execution of the operating system. The exact apewatt this
system call depends on the kernel’'s implementation andugxecenvironment. Kernels
running under Simics should shut down the simulation vialde&l Mhal t () . However,

2Deciding on this threshold is easier than it may seem at fistif you feel like you need to ask us for a
clarification you should probably think further.

10

implementations should be prepared to do something rebaboii&l Mhal t () is a no-op,
which will happen if the kernel is run on real hardware.

11

	Introduction
	Overview

	User Execution Environment
	The System Call Interface
	Invocation and Return
	Semantics of System Call Interface
	System Call Stub Library

	System Call Specifications
	Overview
	Task & Thread IDs
	Per-thread ``run flag''
	Life Cycle
	Thread Management
	Memory Management
	Console I/O
	Miscellaneous System Interaction

