
15-213, Fall 2009
Malloc Lab: Writing a Dynamic Storage Allocator

Assigned: Thu, Oct. 22

Checkpoint Due: Tue, Nov. 3, 11:59pm
No Late Turn in for Checkpoint

Due: Thu, Nov. 12, 11:59PM
Last Possible Time of Final Turn in: Sat, Nov. 14, 11:59PM

Sean Stangl and Thomas Tuttle (sstangl@andrew.cmu.edu, ttuttle@andrew.cmu.edu) are
the lead people for this assignment.

1 Introduction

In this lab you will be writing a dynamic storage allocator for C programs, that is, your own version of
themalloc, free, realloc, andcalloc functions. You are encouraged to explore the design space
creatively and implement an allocator that is correct, efficient and fast.

2 Warning

Bugs can be especially pernicious and difficult to track downin an allocator, and you may easily spend more
time debugging than coding in this assignment. Westrongly encourage you to start early.

3 Logistics

This is an individual project. You should do this lab on one ofthe fish machines. As always, clarifications
and corrections will be posted to the Autolab message board.Please monitor the message board closely,
especially as the deadline approaches.

1

4 Hand Out Instructions

Start by downloadingmalloclab-checkpoint-handout.tar from Autolab to a protected directory
in which you plan to do your work. Then give the commandtar xvf malloclab-checkpoint-handout.tar.
This will cause a number of files to be unpacked into the directory.

The only file you will be modifying and turning in ismm.c, which contains your solution.Themdriver.c
program is a driver program that allows you to locally evaluate the performance of your solution in the same
way that Autolab will evaluate your final submission. Use thecommandmake to generate the driver code
and run it with the command./mdriver.

5 How to Work on the Lab

Your dynamic storage allocator will consist of the following functions, which are declared inmm.h and
defined inmm.c.

int mm_init(void);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);
void *calloc (size_t nmemb, size_t size);
void mm_heapcheck(void);

Themm.c file we have given you implements nothing. However, we have also provided you with a program
calledmm-naive.c, which implements everything correctly, but naively. In addition, there is an example
implicit list allocator described in your textbook.

Because we are running on 64-bit machines, your allocator must be coded accordingly, with one exception:
the size of the heap will never be greater than or equal to232 bytes. This doesnot imply anything about
the location of the heap, but there is a neat optimization that can be done using this information. However,
be very, very careful if you decide to take advantage of this fact. There are certain invalid optimizations
that will pass all the driver checks because of the limited range of functionaly we can check in a reasonable
amount of time, so we’ll be manually looking over your code for these violations. If you don’t understand
this paragraph, you should re-read the x8664 handout and come to office hours with questions if you’re still
unsure.

You may usemm.c, mm-naive.c, or the book’s example code as starting points for your ownmm.c file.
Implement the functions (and possibly define other privatestatic helper functions), so that they obey the
following semantics:

• mm init: Performs any necessary initializations, such as allocating the initial heap area. The return
value should be -1 if there was a problem in performing the initialization, 0 otherwise.

Every time the driver executes a new trace, it resets your heap to the empty heap by calling your
mm init function.

2

• malloc: The malloc routine returns a pointer to an allocated block payload of atleastsize
bytes. The entire allocated block should lie within the heapregion and should not overlap with any
other allocated chunk.

Since the standard C library (libc) malloc always returns payload pointers that are aligned to8
bytes, your malloc implementation should do likewise and always return 8-byte aligned pointers.

• free: The free routine frees the block pointed to byptr. It returns nothing. This routine is
only guaranteed to work when the passed pointer (ptr) was returned by an earlier call tomalloc,
calloc, orrealloc and has not yet been freed.free(NULL) has no effect.

• realloc: Therealloc routine returns a pointer to an allocated region of at leastsize bytes
with the following constraints.

– if ptr is NULL, the call is equivalent tomalloc(size);

– if size is equal to zero, the call is equivalent tofree(ptr), and should return NULL;

– if ptr is not NULL, it must have been returned by an earlier call tomalloc or realloc,
and not yet have been freed. The call torealloc takes an existing block of memory, pointed
to by ptr — the old block. It then allocates a region of memory large enough to holdsize
bytes and returns the address of this new block. Note that theaddress of the new block might be
the same as the old block (perhaps there was free space after the old block and it could just be
extended, or the newsize was smaller than the old size), or it might be different, depending
on your implementation, the amount of internal fragmentation in the old block, and the size of
therealloc request. If the call torealloc doesn’t fail and the returned address is different
than the address passed in, the old block has been freed and should not be used, freed, or passed
to realloc again.

The contents of the new block are the same as those of the oldptr block, up to the minimum of
the old and new sizes. Everything else is uninitialized. Forexample, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8
bytes of the old block and the last 4 bytes are uninitialized.Similarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new blockare identical to the first 4 bytes
of the old block.

• calloc: Allocates memory for an array ofnmemb elements ofsize bytes each and returns a
pointer to the allocated memory. The memory is set to zero before returning.

Note: Your calloc will not be graded on throughput or performance. Therefore a correct
simple implementation will suffice.

• mm checkheap: Themm checkheap function scans the heap and checks it for consistency. This
function will be very useful in debugging your malloc implementation. Some malloc bugs are very
hard to debug using conventional gdb techniques. The only effective technique for some of these bugs
is to use a heap consistency checker. When you you encounter abug, you can isolate it with repeated
calls to the consistency checker until you find the instruction that corrupted your heap. Because of
the importance of the consistency checker, it will be graded.

3

These semantics match the semantics of the correspondinglibc routines (note thatmm checkheap does
not have a corresponding function inlibc). Typeman malloc to the shell for complete documentation.

6 Support Routines

Thememlib.c package simulates the memory system for your dynamic memoryallocator. You can invoke
the following functions inmemlib.c:

• void *mem sbrk(int incr): Expands the heap byincr bytes, whereincr is a positive
non-zero integer, and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unixsbrk function, except thatmem sbrk accepts only a positive
non-zero integer argument.

• void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.

• void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.

• size t mem heapsize(void): Returns the current size of the heap in bytes.

• size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux systems).

7 The Trace-driven Driver Program

The driver programmdriver.c in themalloclab-handout.tar distribution tests yourmm.c pack-
age for correctness, space utilization, and throughput. The driver program is controlled by a set oftrace
filesthat are included in themalloclab-handout.tardistribution. Each trace file contains a sequence
of allocate and free directions that instruct the driver to call your malloc andfree routines in some se-
quence. The driver and the trace files are the same ones we willuse when we grade your handinmm.c
file.

When the driver program is run, it will run each trace file 12 times: once to make sure your implementation
is correct, once to determine the space utilization, and 10 times to determine the performance.

The drivermdriver.c accepts the following command line arguments. The normal operation is to run it
with no arguments, but you may find it useful to use the arguments during development.

• -t <tracedir>: Look for the default trace files in directorytracedir instead of the default
directory defined inconfig.h.

• -f <tracefile>: Use one particulartracefile instead of the default set of tracefiles for test-
ing correctness and performance.

• -c <tracefile>: Run a particulartracefile exactly once, testing only for correctness. This
option is extremently useful if you want to print out debugging messages.

4

• -h: Print a summary of the command line arguments.

• -l: Run and measurelibc malloc in addition to the student’s malloc package. This is interesting
mainly to see how slow the libc malloc package is.

• -V: Verbose output. Prints additional diagnostic information as each trace file is processed. Useful
during debugging for determining which trace file is causingyour malloc package to fail.

• -v <verbose level>: This optional feature lets you set your verbose level manually to a par-
ticular integer.

• -d <i>: At debug level 0, very little validity checking is done. This is useful if you’re mostly done
but just tweaking performance.

At debug level 1, every array the driver allocates is filled with random bits. When the array is freed
or reallocated, we check to make sure the bits haven’t been changed. This is the default.

At debug level 2, every time any operation is done, all arraysare checked. This is very slow, but
useful to discover problems very quickly.

• -D: Equivalent to-d2.

• -s <s>: Timeout afters seconds. The default is to never timeout.

8 Programming Rules

• You should not change any of the interfaces inmm.h. However, we strongly encourage you to use
static helper functions inmm.c to break up your code into small, easy-to-understand segments.

• You should not invoke any external memory-management related library calls or system calls. The use
of thelibc malloc, calloc, free, realloc, sbrk, brk or any other memory management
packages is strictly prohibited.

• You are not allowed to define any global data structures such as arrays, structs, trees, or lists in your
mm.c program. However, youare allowed to declare global scalar variables such as integers, floats,
and pointers inmm.c.

The reason for this restriction is that the driver can’t account for such global variariables in its memory
utilization measure. If you need space for large data structures, you can put them at the beginning of
the heap.

• You are not allowed to simply hand in the code for the allocators from the CS:APP or K&R books. If
you do so you will receive no credit.

However, we encourage you to study this examples and to use them as starting points. For example,
you might modify the CS:APP code to use an explicit list with constant time coalescing. Or you might
modify the K&R code to use constant time coalescing. Or you might use either one as the basis for a
segregated list allocator. Please remember, however, thatyour allocator must be for 64-bit machines.

5

• It is OK to look at any descriptions of algorithms found in thetextbook or elsewhere, but it isnot
acceptable to copy any code of malloc implementations foundonline or in other sources, except for
the implicit list allocator described in your book or K&R.

• We encourage you to study the trace files and optimize for them, but your code must be correct on
any trace. The score you get is averaged over all traces marked ’*’. The utilization score weights all
traces equally, whereas the performance score weights by the number of operations. In other words,
if you are worried about speed, optimize for the largest traces.

• For consistency with thelibc malloc package, which returns blocks aligned on 8-byte boundaries,
your allocator must always return pointers that are alignedto 8-byte boundaries. The driver will check
this requirement.

• Your code should compile without warnings. Warnings often point to subtle errors in your code;
whenever you get a warning, you should double-check the corresponding line to see if the code is
really doing what you intended. If it is, then you should eliminate the warning by tweaking the code
(for instance, one common type of warning can be eliminated by adding a type-cast where a value is
being converted from one type of pointer to another).

9 Evaluation

Submission and evaluation will occur in two stages: checkpoint and final hand-in. The checkpoint is worth
20 points and only checks the correctness of your allocator.There are 12 traces that are run, and you will
receive points for each trace that runs correctly. You are not allowed to submit the checkpoint late, even if
you have grace days available.

The grading of the final hand-in will be based on performance of your allocator on the given traces, the
quality of your heap checker, and your coding style. The finalhand-in is described in more detail below.

The checkpoint and final hand-in must be submitted separately. They appear as separate projects on autolab.

9.1 Final hand-in

There are a total of 120 points. You will receivezero points if you break any of the rules or your code is
buggy and crashes the driver.Please be sure you have read all of the rules above.Otherwise, your grade
will be calculated as follows:

• Performance (100 points).Two metrics will be used to evaluate your solution:

– Space utilization: The peak ratio between the aggregate amount of memory used by the driver
(i.e., allocated viamalloc but not yet freed viafree) and the size of the heap used by your al-
locator. The optimal ratio equals to 1. You should find good policies to minimize fragmentation
in order to make this ratio as close as possible to the optimal.

– Throughput: The average number of operations completed per second.

6

The driver program summarizes the performance of your allocator by computing aperformance index,
0 ≤ P ≤ 100, which is a weighted sum of the space utilization and throughput

P = 100 ∗

(

w min

(

1,
U − Umin

Umax − Umin

)

+ (1 − w)min

(

1,
T − Tmin

Tmax − Tmin

))

whereU is your space utilization,T is your throughput,Umax andTmax are the estimated space
utilization and throughput of an optimized malloc package,andUmin andTmin are minimum space
utilization and throughput values, below which you will receive0 points. 1 The performance index
favors space utilization over throughput:w = 0.7.

Observing that both memory and CPU cycles are expensive system resources, we adopt this formula
to encourage balanced optimization of both memory utilization and throughput. Since each metric
will contribute at mostw and1 − w to the performance index, respectively, you should not go to
extremes to optimize either the memory utilization or the throughput only. To receive a good score,
you must achieve a balance between utilization and throughput.

The 100 performance points ($perfpoints) will be allocated as a function of the performance
index ($perfindex):

if ($perfindex < 60) {
$perfpoints = 0;

}
elsif ($perfindex < 100) {

$perfpoints = (25 + ((3 * $perfindex)/4));
}
else {

$perfpoints = 100;
}

We chose this function so that, when run on the fish machines, the CS:APP implicit list allocator
receives 0/100 points, a good explicit list allocator receives around 85/100 points, a good segregated
list allocator gets around 96/100 points, and a highly tunedseglist allocator can get 100/100 points.

You will receive no performance points for an allocator thatfails on any of the traces or has a perfor-
mance index lower than 60.

• Heap Consistency Checker (10 points).Ten points will be awarded based on the quality of your
implementation ofmm checkheap. It is up to your discretion how thorough you want your heap
checker to be. The more the checker tests, the more valuable it will be as a debugging tool.

However, to receive full credit for this part, we require that the header comments for your heap checker
list all of the invariants of your data structures. For each such invariant, you should state whether or
not your heap checker verifies that it is satisfied. (It is not OK to list all the invariants and not check
any of them - you should at least verify the critical portions). Some examples of what your heap
checker should check are provided below.

1The values forUmin, Umax, Tmin andTmax are constants in the driver (0.41, 0.91, 0 Kops/s, and 16,000Kops/s) that your
instructor established when they configured the program. This means that once you beat 91% utilization and 16,000 Kops/s, your
performance index is perfect.

7

– Checking the heap (implicit list, explicit list, segregated list):

∗ Check epilogue and prologue blocks.

∗ Check block’s address alignment.

∗ Check heap boundaries.

∗ Check each block’s header and footer: size (minimum size, alignment), prev/next allo-
cate/free bit consistency, header and footer matching eachother.

∗ Check coalescing: no two consecutive free blocks in the heap.

– Checking the free list (explicit list, segregated list):

∗ All next/prev pointers are consistent (if A’s next pointer points to B, B’s prev pointer should
point to A).

∗ All free list pointers points betweenmem heap lo() andmem heap high().

∗ Count free blocks by iterating every block, and traversing free list by pointers and see if
they match.

∗ All blocks in each list bucket fall within bucket size range (segregated list).

• Style (10 points).

– Your code should be decomposed into functions and use as few global variables as possible.
You should use macros or inline functions to isolate the pointer arithmetic to as few places as
possible.

– Your code must begin with a header comment that gives an overview of the structure of your
free and allocated blocks, the organization of the free list, and how your allocator manipulates
the free list.

– In addition to this overview header comment, each function should be preceded by a header
comment that describes what the function does.

10 Handin Instructions

Make sure you have included your name and Andrew ID in the header comment ofmm.c.

Hand in yourmm.c file by uploading it to Autolab. You may submit your solution as many times as you
wish up until the due date.

Only the last version you submit will be graded.

For this lab, you must upload your code for the results to appear on the class status page.

11 Hints

• Use themdriver -c option or-f option. During initial development, using tiny trace files will
simplify debugging and testing. The first several traces that mdriver runs are such small trace files.

8

• Use themdriver -V options. The-V option will also indicate when each trace file is processed,
which will help you isolate errors.

• Use themdriver -D option.This does a lot of checking to quickly find errors.

• Use a debugger.A debugger will help you isolate and identify out of bounds memory references.
Modify the Makefile to pass the-g option togcc, and not to pass the-O2 option togcc, when you
are using a debugger. But don’t forget to restore the Makefileto the original when doing performance
testing.

• Use gdb’swatch commandto find out what changed some value you didn’t expect to have changed.

• Encapsulate your pointer arithmetic in C preprocessor macros or inline functions.Pointer arithmetic
in memory managers is confusing and error-prone because of all the casting that is necessary. You
can reduce the complexity significantly by writing macros for your pointer operations. See the text
for examples.

• Remember we are working with 64-bit fish machines.Pointers take up 8 bytes of space, so you should
understand the macros in the book and port them to 64-bit machines. Notably,sizeof(size t)
== 8 on 64-bit machines.

• Use your heap consistency checker.We are assigning ten points to yourmm heapcheck function
for a reason. A good heap consistency checker will save you hours and hours when debugging your
malloc package. You can use your heap checker to find out whereexactly things are going wrong
in your implementation (hopefully not in too many places!).Make sure that your heap checker is
detailed. Your heap checker should scan the heap, performing sanity checks and possibly printing out
useful debugging information. Every time you change your implementation, one of the first things
you should do is think about how yourmm heapcheck will change, what sort of tests need to be
performed, etc.

• Use a profiler.You may find thegprof tool helpful for optimizing performance.

• Keep backups.Whenever you have a working allocator and are considering making changes to it,
keep a backup copy of the last working version. It’s very common to make changes that inadvertently
break the code, and then have trouble undoing them.

• Versioning your implementation.You may find it useful to manage a couple of different versions
of implementation (i.e. explicit list, segregated list) during the assignment. Sincemdriver looks
for mm.c, creating a symbolic link between files is useful in this case. For example, you can create
a symbolic link betweenmm.c and your implementation such asmm-explicit.cwith command
lineln -s mm-explicit mm.c. Now would also be an great time to learn an industrial-strength
version control system like Git (http://git-scm.com).

• Start early! It is possible to write an efficient malloc package with a few pages of code. However, we
can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your career. So start early, and good luck!

9

12 More Hints

Basically, you want to design an algorithm and data structure for managing free blocks that achieves the
right balance of space utilization and speed. Note that thisinvolves a tradeoff. For space, you want to keep
your internal data structures small. Also, while allocating a free block, you want to do a thorough (and
hence slow) scan of the free blocks, to extract a block that best fits our needs. For speed, you want fast (and
hence complicated) data structures that consume more space. Here are some of the design options available
to you:

• Data structures to organize free blocks:

– Implicit free list

– Explicit free list

– Segregated free lists

• Algorithms to scan free blocks:

– First fit/Next fit

– Blocks sorted by address with first fit

– Best fit

You can pick (almost) any combination from the two. For example, you can implement an explicit free list
with next fit, a segregated list with best fit, and so on. Also, you can build on a working implementation of
a simple data structure to a more complicated one.

In general, we suggest that you start with an implicit free list, then change this to an explicit list, and then
use the explicit list as the basis for a final version based on segregated lists.

10

