15-213, Fall 2009
Malloc Lab: Writing a Dynamic Storage Allocator
Assigned: Thu, Oct. 22

Checkpoint Due: Tue, Nov. 3, 11:59pm
No Late Turn in for Checkpoint

Due: Thu, Nov. 12, 11:59PM
Last Possible Time of Final Turn in: Sat, Nov. 14, 11:59PM

Sean Stangl and Thomas Tuttkest angl @ndr ew. cnu. edu, ttuttl e@ndrew. cnu. edu)are
the lead people for this assignment.

1 Introduction

In this lab you will be writing a dynamic storage allocator f©0 programs, that is, your own version of
themal | oc,free,real |l oc, andcal | oc functions. You are encouraged to explore the design space
creatively and implement an allocator that is correct, igfficand fast.

2 Warning

Bugs can be especially pernicious and difficult to track dowem allocator, and you may easily spend more
time debugging than coding in this assignment. &¥engly encourage you to start early.

3 Logistics

This is an individual project. You should do this lab on ondlaf fish machines. As always, clarifications
and corrections will be posted to the Autolab message bddshse monitor the message board closely
especially as the deadline approaches.

4 Hand Out Instructions

Start by downloadingel | ocl ab- checkpoi nt - handout . t ar from Autolab to a protected directory
in which you plan to do your work. Then give the commarsd xvf mal | ocl ab- checkpoi nt - handout . t ar.
This will cause a number of files to be unpacked into the dargct

The only file you will be modifying and turning inrisn ¢, which contains your solutiorThendr i ver. ¢
program is a driver program that allows you to locally evidithe performance of your solution in the same
way that Autolab will evaluate your final submission. Use ¢tbenmandrake to generate the driver code
and run it with the command/ ndr i ver.

5 How to Work on the Lab

Your dynamic storage allocator will consist of the follogifunctions, which are declared mm h and
defined innm c.

i nt mm.init(void);

void *mal | oc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_ t size);
void *calloc (size_t nnenb, size t size);
void mm heapcheck(void);

Thermm c file we have given you implements nothing. However, we hase ptovided you with a program
calledmm nai ve. ¢, which implements everything correctly, but naively. Irdaidn, there is an example
implicit list allocator described in your textbook.

Because we are running on 64-bit machines, your allocatst beicoded accordingly, with one exception:
the size of the heap will never be greater than or equaPtdytes. This doesiot imply anything about
the location of the heap, but there is a neat optimizationdha be done using this information. However,
be very, very careful if you decide to take advantage of tai.f There are certain invalid optimizations
that will pass all the driver checks because of the limitedyeaof functionaly we can check in a reasonable
amount of time, so we'll be manually looking over your codetftese violations. If you don’t understand
this paragraph, you should re-read the x8bhandout and come to office hours with questions if youite st
unsure.

You may usemm ¢, mm nai ve. c, or the book’s example code as starting points for your awnc file.
Implement the functions (and possibly define other prigdtat i ¢ helper functions), so that they obey the
following semantics:

e Mmi ni t: Performs any necessary initializations, such as allogdkia initial heap area. The return
value should be -1 if there was a problem in performing thiailization, 0 otherwise.

Every time the driver executes a new trace, it resets youp bedghe empty heap by calling your
mm.i ni t function.

e mal | oc: Thenmal | oc routine returns a pointer to an allocated block payload déastsi ze
bytes. The entire allocated block should lie within the hesgion and should not overlap with any
other allocated chunk.

Since the standard C library i(bc) malloc always returns payload pointers that are alignel to
bytes, your malloc implementation should do likewise anagbsks return 8-byte aligned pointers.

e free: Thefree routine frees the block pointed to Ipt r. It returns nothing. This routine is
only guaranteed to work when the passed poinper § was returned by an earlier call tml | oc,
cal | oc,orreal | oc and has not yet been freefd: ee(NULL) has no effect.

e real l oc: Thereal | oc routine returns a pointer to an allocated region of at leaste bytes
with the following constraints.

— if pt r is NULL, the call is equivalent toral | oc(si ze) ;
— if si ze is equal to zero, the call is equivalentftoee(pt r) , and should return NULL,;

— if ptr is not NULL, it must have been returned by an earlier calirtd | oc orreal | oc,
and not yet have been freed. The calt®al | oc takes an existing block of memory, pointed
to by pt r — theold block It then allocates a region of memory large enough to lsélde
bytes and returns the address of this new block. Note thatdtieess of the new block might be
the same as the old block (perhaps there was free spacehefteidtblock and it could just be
extended, or the newi ze was smaller than the old size), or it might be different, dejieg
on your implementation, the amount of internal fragmeantaitn the old block, and the size of
ther eal | oc request. If the call to eal | oc doesn'’t fail and the returned address is different
than the address passed in, the old block has been freed @ad siot be used, freed, or passed
to realloc again.

The contents of the new block are the same as those of the oldblock, up to the minimum of

the old and new sizes. Everything else is uninitialized. é&@mple, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the neekldre identical to the first 8
bytes of the old block and the last 4 bytes are uninitialiZzgichilarly, if the old block is 8 bytes

and the new block is 4 bytes, then the contents of the new laoekdentical to the first 4 bytes
of the old block.

e cal | oc: Allocates memory for an array afrrenb elements ofsi ze bytes each and returns a
pointer to the allocated memory. The memory is set to zerorbekturning.

Note: Your cal | oc will not be graded on throughput or performance. Therefore acorrect
simple implementation will suffice.

e mmcheckheap: Themmcheckheap function scans the heap and checks it for consistency. This
function will be very useful in debugging your malloc implentation. Some malloc bugs are very
hard to debug using conventional gdb techniques. The ofdgtefe technique for some of these bugs
is to use a heap consistency checker. When you you encoubigy, §ou can isolate it with repeated
calls to the consistency checker until you find the instarctihat corrupted your heap. Because of
the importance of the consistency checker, it will be graded

These semantics match the semantics of the correspohding routines (note tharmcheckheap does
not have a corresponding functionlim bc). Typenman mnal | oc to the shell for complete documentation.

6 Support Routines

Thenmen i b. ¢ package simulates the memory system for your dynamic meallogator. You can invoke
the following functions imem i b. c:

e void »memsbrk(int incr): Expands the heap biyncr bytes, whera ncr is a positive
non-zero integer, and returns a generic pointer to the fitet bf the newly allocated heap area. The
semantics are identical to the Urbr k function, except thatremsbr k accepts only a positive
non-zero integer argument.

e voi d rmemheap. o(voi d) : Returns a generic pointer to the first byte in the heap.
e voi d *memheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.
e sizet memheapsi ze(voi d) : Returns the current size of the heap in bytes.

e sizet nmempagesi ze(voi d) : Returns the system'’s page size in bytes (4K on Linux systems

7 The Trace-driven Driver Program

The driver programmdr i ver . c inthenal | ocl ab- handout . t ar distribution tests yourm c pack-
age for correctness, space utilization, and throughput driver program is controlled by a set tohce
filesthat are included in theal | ocl ab- handout . t ar distribution. Each trace file contains a sequence
of allocate and free directions that instruct the driverath gour mal | oc andf r ee routines in some se-
guence. The driver and the trace files are the same ones wassillvhen we grade your handim c

file.

When the driver program is run, it will run each trace file 8ds: once to make sure your implementation
is correct, once to determine the space utilization, andm@stto determine the performance.

The driverndr i ver . ¢ accepts the following command line arguments. The normetaijon is to run it
with no arguments, but you may find it useful to use the argusnéuring development.

e -t <tracedir>: Look for the default trace files in directotyr acedi r instead of the default
directory defined irtonfi g. h.

e -f <tracefil e>:Useone particularracef i | e instead of the default set of tracefiles for test-
ing correctness and performance.

e -C <tracefil e>:Runa particulat r acefi | e exactly once, testing only for correctness. This
option is extremently useful if you want to print out debuggimessages.

- h: Print a summary of the command line arguments.

-1 : Run and measurei bc malloc in addition to the student’s malloc package. Thisiteriesting
mainly to see how slow the libc malloc package is.

- V: Verbose output. Prints additional diagnostic informatas each trace file is processed. Useful
during debugging for determining which trace file is causiogr malloc package to fail.

-v <verbose | evel >: This optional feature lets you set your verbose level méyt@a a par-
ticular integer.

-d <i >: Atdebug level 0, very little validity checking is done. 8hs useful if you're mostly done
but just tweaking performance.

At debug level 1, every array the driver allocates is fillethwandom bits. When the array is freed
or reallocated, we check to make sure the bits haven't beamgeld. This is the default.

At debug level 2, every time any operation is done, all armagschecked. This is very slow, but
useful to discover problems very quickly.

- D: Equivalent to- d2.

- s <s>: Timeout afters seconds. The default is to never timeout.

Programming Rules

You should not change any of the interfacesrm h. However, we strongly encourage you to use
st at i ¢ helper functions inmm ¢ to break up your code into small, easy-to-understand segmen

You should not invoke any external memory-managementeeldirary calls or system calls. The use
of thel i bc mal | oc,cal | oc,free,real |l oc, sbrk, brk or any other memory management
packages is strictly prohibited.

You are not allowed to define any global data structures ss@rrays, structs, trees, or lists in your
nm ¢ program. However, yoare allowed to declare global scalar variables such as inteflesds,
and pointers ilmmm c.

The reason for this restriction is that the driver can’'t actgdor such global variariables in its memory
utilization measure. If you need space for large data strast you can put them at the beginning of
the heap.

You are not allowed to simply hand in the code for the allosafmm the CS:APP or K&R books. If
you do so you will receive no credit.

However, we encourage you to study this examples and to ese s starting points. For example,
you might modify the CS:APP code to use an explicit list witmstant time coalescing. Or you might
modify the K&R code to use constant time coalescing. Or yoghtiise either one as the basis for a
segregated list allocator. Please remember, howeverydhatallocator must be for 64-bit machines.

e It is OK to look at any descriptions of algorithms found in tietbook or elsewhere, but it isot
acceptable to copy any code of malloc implementations fanithe or in other sources, except for
the implicit list allocator described in your book or K&R.

e We encourage you to study the trace files and optimize for theernyour code must be correct on
any trace. The score you get is averaged over all traces th&tkd he utilization score weights all
traces equally, whereas the performance score weightsehyuimber of operations. In other words,
if you are worried about speed, optimize for the largestesac

e For consistency with thiei bc mal | oc package, which returns blocks aligned on 8-byte boundaries
your allocator must always return pointers that are alignédtbyte boundaries. The driver will check
this requirement.

e Your code should compile without warnings. Warnings oft@inpto subtle errors in your code;
whenever you get a warning, you should double-check theesponding line to see if the code is
really doing what you intended. If it is, then you should efiate the warning by tweaking the code
(for instance, one common type of warning can be eliminatedduling a type-cast where a value is
being converted from one type of pointer to another).

9 Evaluation

Submission and evaluation will occur in two stages: cherkpnd final hand-in. The checkpoint is worth
20 points and only checks the correctness of your alloc3tbere are 12 traces that are run, and you will
receive points for each trace that runs correctly. You atahowed to submit the checkpoint late, even if
you have grace days available.

The grading of the final hand-in will be based on performarfcgoor allocator on the given traces, the
quality of your heap checker, and your coding style. The firald-in is described in more detail below.

The checkpoint and final hand-in must be submitted sepgrdieey appear as separate projects on autolab.

9.1 Final hand-in

There are a total of 120 points. You will receizero pointsif you break any of the rules or your code is
buggy and crashes the driv€liease be sure you have read all of the rules abov®therwise, your grade
will be calculated as follows:

e Performance (100 pointsYwo metrics will be used to evaluate your solution:

— Space utilization The peak ratio between the aggregate amount of memory ystw ldriver
(i.e., allocated viaral | oc but not yet freed vid r ee) and the size of the heap used by your al-
locator. The optimal ratio equals to 1. You should find goolices to minimize fragmentation
in order to make this ratio as close as possible to the optimal

— Throughput The average number of operations completed per second.

The driver program summarizes the performance of youraitody computing @erformance index
0 < P <100, which is a weighted sum of the space utilization and thrpugh

U—Upi T — T
P =100 % (wmin (1, —mm) + (1 — w) min (1, 7m))
Umax - Umzn () Tmaa: - Tmzn
whereU is your space utilization] is your throughputU,,,., andT,,,, are the estimated space
utilization and throughput of an optimized malloc packaaedU,,.;,, andT},;, are minimum space

utilization and throughput values, below which you will eae 0 points. * The performance index
favors space utilization over throughput:= 0.7.

Observing that both memory and CPU cycles are expensiversyssources, we adopt this formula
to encourage balanced optimization of both memory utitiraind throughput. Since each metric
will contribute at mostw and1 — w to the performance index, respectively, you should not go to
extremes to optimize either the memory utilization or th@tighput only. To receive a good score,
you must achieve a balance between utilization and thrautghp

The 100 performance point$ger f poi nt s) will be allocated as a function of the performance
index @per fi ndex):

if ($perfindex < 60) {
$per fpoints = 0;
}
el sif ($perfindex < 100) {
$perfpoints = (25 + ((3 * $perfindex)/4));

}
el se {

$perfpoints = 100;
}

We chose this function so that, when run on the fish machimesCS:APP implicit list allocator
receives 0/100 points, a good explicit list allocator reesiaround 85/100 points, a good segregated
list allocator gets around 96/100 points, and a highly tuseglist allocator can get 100/100 points.

You will receive no performance points for an allocator tfads on any of the traces or has a perfor-
mance index lower than 60.

e Heap Consistency Checker (10 points)en points will be awarded based on the quality of your
implementation ofrmcheckheap. It is up to your discretion how thorough you want your heap
checker to be. The more the checker tests, the more valuahkiklie as a debugging tool.

However, to receive full credit for this part, we requiretttiee header comments for your heap checker
list all of the invariants of your data structures. For each suchiamwg you should state whether or
not your heap checker verifies that it is satisfied. (It is nktt® list all the invariants and not check
any of them - you should at least verify the critical portipn§ome examples of what your heap
checker should check are provided below.

1The values folUmin, Umaz: Tmin andTimaes are constants in the driver (0.41, 0.91, 0 Kops/s, and 164a(@3/s) that your
instructor established when they configured the prograns fieans that once you beat 91% utilization and 16,000 Kppsts
performance index is perfect.

— Checking the heap (implicit list, explicit list, segregatest):

*

Check epilogue and prologue blocks.
Check block’s address alignment.
Check heap boundaries.

Check each block’s header and footer: size (minimum sizgnm@lent), prev/next allo-
cate/free bit consistency, header and footer matching ethen.

x Check coalescing: no two consecutive free blocks in the.heap

*

*

*

— Checking the free list (explicit list, segregated list):

x All next/prev pointers are consistent (if A's next point@imts to B, B’s prev pointer should
point to A).
x All free list pointers points betweamemheap_l o() andnemheap_hi gh() .

x Count free blocks by iterating every block, and traversirgg flist by pointers and see if
they match.

x All blocks in each list bucket fall within bucket size rangeg@regated list).
e Style (10 points).

— Your code should be decomposed into functions and use aslédalgrariables as possible.
You should use macros or inline functions to isolate the teoiarithmetic to as few places as
possible.

— Your code must begin with a header comment that gives an ieverf the structure of your
free and allocated blocks, the organization of the free distl how your allocator manipulates
the free list.

— In addition to this overview header comment, each functioougl be preceded by a header
comment that describes what the function does.

10 Handin Instructions

Make sure you have included your name and Andrew ID in the drea@mment ofim c.

Hand in yournm c file by uploading it to Autolab. You may submit your solutiog many times as you
wish up until the due date.

Only the last version you submit will be graded.
For this lab, you must upload your code for the results to appe the class status page.

11 Hints

e Use thendri ver - c option or-f option. During initial development, using tiny trace files will
simplify debugging and testing. The first several tracesrtbla i ver runs are such small trace files.

Use thendr i ver -V options. The - V option will also indicate when each trace file is processed,
which will help you isolate errors.

Use thendr i ver - Doption. This does a lot of checking to quickly find errors.

Use a debuggerA debugger will help you isolate and identify out of boundsmaey references.
Modify the Makefile to pass theg option togcc, and not to pass theQ2 option togcc, when you
are using a debugger. But don't forget to restore the Makefitee original when doing performance
testing.

Use gdb’snvat ch commando find out what changed some value you didn’t expect to hasegdd.

Encapsulate your pointer arithmetic in C preprocessor maar inline functionsPointer arithmetic
in memory managers is confusing and error-prone becausk theacasting that is necessary. You
can reduce the complexity significantly by writing macrosyour pointer operations. See the text
for examples.

Remember we are working with 64-bit fish machiri&sinters take up 8 bytes of space, so you should
understand the macros in the book and port them to 64-bit imeshNotablysi zeof (si zet)
== 8 on 64-bit machines.

Use your heap consistency checkéfe are assigning ten points to yoomheapcheck function
for a reason. A good heap consistency checker will save yawshend hours when debugging your
malloc package. You can use your heap checker to find out wehexetly things are going wrong
in your implementation (hopefully not in too many placesMake sure that your heap checker is
detailed. Your heap checker should scan the heap, perfgrsainity checks and possibly printing out
useful debugging information. Every time you change youplementation, one of the first things
you should do is think about how yommheapcheck will change, what sort of tests need to be
performed, etc.

Use a profiler.You may find thegpr of tool helpful for optimizing performance.

Keep backupsWhenever you have a working allocator and are consideringingachanges to it,
keep a backup copy of the last working version. It's very camro make changes that inadvertently
break the code, and then have trouble undoing them.

Versioning your implementationYou may find it useful to manage a couple of different versions
of implementation (i.e. explicit list, segregated list)ritg the assignment. Singedr i ver looks

for mm c, creating a symbolic link between files is useful in this cdser example, you can create
a symbolic link betweemm ¢ and your implementation such as expl i ci t. ¢ with command
lineln -s nmexplicit mm c. Nowwould also be an great time to learn an industrial-gftten
version control system like Git (http://git-scm.com).

Start early!lt is possible to write an efficient malloc package with a feages of code. However, we
can guarantee that it will be some of the most difficult anchigijzated code you have written so far
in your career. So start early, and good luck!

12 More Hints

Basically, you want to design an algorithm and data strectar managing free blocks that achieves the
right balance of space utilization and speed. Note thatithives a tradeoff. For space, you want to keep
your internal data structures small. Also, while allocgtm free block, you want to do a thorough (and

hence slow) scan of the free blocks, to extract a block thsitfiie our needs. For speed, you want fast (and
hence complicated) data structures that consume more.dpaceare some of the design options available
to you:

e Data structures to organize free blocks:

— Implicit free list
— Explicit free list
— Segregated free lists

e Algorithms to scan free blocks:

— First fit/Next fit
— Blocks sorted by address with first fit
— Best fit

You can pick (almost) any combination from the two. For exBmpou can implement an explicit free list
with next fit, a segregated list with best fit, and so on. Alsay gan build on a working implementation of
a simple data structure to a more complicated one.

In general, we suggest that you start with an implicit freg hen change this to an explicit list, and then
use the explicit list as the basis for a final version basedegregjated lists.

10

