CS 213, Fall 2009
Lab Assignment L6: Writing a Caching Web Proxy
Assigned: Thu, Nov 12, Due: Thu, Dec 03, 11:59 PM
Last Possible Time to Turn in: Sat, Dec 05, 11:59 PM

Josh Primero, Tessa Engiimero@andrew.cmu.edu ,yeng@andrew.cmu.edu)are the lead TAs
for this lab.

1 Introduction

A web proxy is a program that acts as a middleman between aevebrsaand browser. Instead of contacting
the server directly to get a web page, the browser contaetpribxy, which forwards the request on to the
server. When the server replies to the proxy, the proxy sémseply on to the browser.

Proxies are used for many purposes. Sometimes proxies adeimgirewalls, such that the proxy is the
only way for a browser inside the firewall to contact a servgisimie. The proxy may do translation on the
page, for instance, to make it viewable on a web-enabledhbelhe. Proxies are used @monymizers — by
stripping a request of all identifying information, a proggn make the browser anonymous to the server.
Proxies can even be used to cache web objects, by storingyao€ogay, an image when a request for it is
first made, and then serving that image directly in respom$attire requests rather than going to the server.

In this lab, you will write a simple proxy that caches web alige In the first part of the lab, you will set
up the proxy to accept a request, forward the request to tiversand return the result back to the browser.
In this part, you will learn how to write programs that intetravith each other over a network (socket
programming), as well as some basic HTTP. In the second ymautwill upgrade your proxy to deal with
multiple open connections at once. Your proxy should spawaparate thread to deal with each request.
This will give you an introduction to dealing with concurmmn a crucial systems concept. Finally, you will
turn your proxy into a proxy cache by adding a simple main mgmeache of recently accessed web pages.

2 Logistics

Unlike previous labs, you can work individually or in a grooftwo on this assignment. The lab is designed
to be doable by a single person, so there is no penalty forimgr&lone. You are, however, welcome to
team up with another student if you wish.

There is no autograding for this lab. Instead, each groupgiik a demo of their proxy to a member of
the course staff in the days following the due date for this I& link to demo sign-ups will be posted on
the course web page soon. All clarifications and revisiorthéoassignment will be posted to the Autolab
message board.

3 Hand Out Instructions

Start by downloadingproxylab-handout.tar from Autolab to a protected directory in which you
plan to do your work. Then give the commatad xvf proxylab-handout.tar . This will cause
a number of files to be unpacked in the directory. The thres jite1 will be modifying and turning in are
proxy.c ,csapp.c ,andcsapp.h .

NOTE: Transfer the tarball to a fish machine before unpacking im&operating systems and file transfer
clients wipe out Unix file permission bits.

Theproxy.c file should eventually contain the bulk of the logic for youoyy.

Thecsapp.c andcsapp.h files are described in your textbook. Theapp.c file contains error han-
dling wrappers and helper functions such as the RIO funst{@®ection 11.4), thepen _clientfd func-
tion (Section 12.4.4), and thapen listenfd function (Section 12.4.7).

4 Part I: Implementing a Sequential Web Proxy

The first step is implementing a basic sequential proxy thathes requests one at a time. When started,
your proxy should open a socket and listen for connectionests on the port number that is passed in on
the command line. (See the section “Port Numbers” below.)

When the proxy receives a connection request from a cligpidally a web browser), the proxy should
accept the connection, read the request, verify that it @lid MTTP request, and parse it to determine the
server that the request was meant for. It should then opemmection to that server, send it the request,
receive the reply, and forward the reply to the browser.

Notice that, since your proxy is a middleman between cliadtserver, it will have elements of both. It will
act as a server to the web browser, and as a client to the wedrs€hus you will get experience with both
client and server programming.

Processing HTTP Requests

When an end user enters a URL suchh#p://www.yahoo.com/news.html into the address bar
of the browser, the browser sends an HTTP request to the phatybegins with a line looking something
like this:

GET http://www.yahoo.com/news.html HTTP/1.0

In this case the proxy will parse the request, open a cororedtiwww.yahoo.com , and then send an
HTTP request starting with a line of the form:

GET /news.html HTTP/1.0

to the servemwvww.yahoo.com . Please note that all lines end with a carriage retuin followed by a
line feed'\n’ , and that HTTP request headers are terminated with an emptySince a port number was
not specified in the browser’s request, in this example tb&pconnects to the default HTTP port (port 80)
on the server. The web browser may specify a port that the emfesis listening on, if it is different from the
default of 80. This is encoded in a URL as followstp://www.example.com:8080/index.html

The proxy, on seeing this URL in a request, should connetigs¢rveivww.example.com on port 8080.

The proxy then simply forwards the response from the semidothe browsedMPORTANT: Please read
the brief section in your textbook (Sec 12.5.3, HTTP tratieas) to better understand the format of the
HTTP requests your proxy should send to a server.

Port Numbers

Every server on the Internet waits for client connectionga@vell-known port. The exact port number varies
from Internet service to service. The clients of your proyxgur browser for example), will need to be told
not just the hostname of the machine running the proxy, lsat#le port number on which it is listening for
connections.

Your proxy should accept a command-line argument that ghegort number on which it should listen for
connection requests. For example, the following command euproxy listening on port 15213:

unix> ./proxy 15213

You will need to specify a port each time you wish to test thdecgou've written. Since there might be
many people working on the same machine, all of you can notheseame port to run your proxies. You
are allowed to select any non-privileged port (greater thidrand less than 64K) for your proxy, as long as
it is not taken by other system processes. Selecting a ptheinpper thousands is suggested (i.e., 3070 or
8104). We have provided a sample scrippit _for _user.pl) that will generate a port number based
on your userid:

unix> ./port_for_user.pl droh
droh: 45806

We strongly advise you to use this port number for you prostiggathan randomly picking one each time
you run. This way, you will not trample on other students’tgor

5 Part II: Dealing with Multiple Requests

Real proxies do not process requests sequentially. Thdywddamultiple requests in parallel. This is
particularly important when handling a request can invaviet of waiting (as it can when you are, for

3

instance, contacting a remote web server). While your piexyaiting for a remote server to respond to a
request so that it can serve one browser, it could be workimg pending request from another browser.

Thus, once you have a working sequential proxy, you shoutda <o handle multiple requests simultane-
ously. The approach we suggest is using threads. A commorofvdgaling with concurrent requests is
for a server to spawn a thread to deal with each request tinas. In this architecture, the main server
thread simply accepts connections and spawns off workeatts that actually deal with the requests (and
terminate when they are done).

6 Partlll: Caching Web Objects

In this part you will add a cache to your proxy that will cacleeently accessed content in main memory.
HTTP actually defines a fairly complex caching model wher® wervers can give instructions as to how
the objects they serve should be cached and clients carfyshewi caches are used on their behalf. In this
lab, however, we will adapt a somewhat simplified approach.

When your proxy queries a web server on behalf of one of yoentd, you should save the object in
memory as you transmit it back to the client. This way if aeotblient requests the same object at some
later time, your proxy needn’t connect to the server agdinamh simply resend the cached object.

Obviously, if your proxy stored every object that was eveyuested, it would require an unlimited amount
of memory. To avoid this (and to simplify our testing) we véltablish a maximum cache size of

MAX_CACHESIZE = 1 MB

and evict objects from the cache when the size exceeds thisnmin.

We will require a simple least-recently-used (LRU) cach@aeement policy when deciding which objects
to evict. One way to achieve this is to mark each cached ohjéhta time-stamp every time it is used.
When you need to evict one, choose the one with the oldestdiamap. Note that reads and writes of a
cached object both count as “using” it.

Another problem is that some web objects are much larger dtizers. It is probably not a good idea to
delete all the objects in your cache in order to store onetgiag, therefore we will establish a maximum
object size of

MAX_OBJECT_SIZE = 100 KB

You should stop trying to cache an object once its size grdvesve this maximum. The easiest way to
implement a correct cache is to allocate a buffer for eaclveacbnnection and accumulate data as you
receive it from the server. If your buffer ever exce@ds\X _OBJECT_SIZE, then you can delete the
buffer and just finish sending the object to the client. Afteu receive all the data you can then put the
object into the cache. Using this scheme the maximum amdutiédta you will ever store in memory is
actually

MAX_CACHESIZE +T « MAX_OBJECT_SIZE

whereT is the maximum number of active connections.

Since this cache is a shared resource amongst your conméistaads, youmust make sure your cache is
thread-safe. A simple strategy to make your cache threfadisdo use a rwlock to ensure that a thread
writing to the cache is the only one accessing it.

7 Evaluation

There will be no autograding for this assignment. Insteathegroup will meet with a member of the
course staff and give a demo in the days following the due datbe lab. The demo will be a chance
for a member of the course staff to evaluate your proxy. Alimbers of the group must be present and
be prepared to discuss and answer any questions conceneimgplementation and/or testing procedures.
Further instructions for the demo sign-up will be postedtmndlass webpage.

There are a total of 100 points for this assignment. Pointshei assigned based on the the following
criteria:

e Basic sequential proxy (30 points). Credit will be given #oiprogram that accepts connections,
forwards the requests to a server, and sends the reply bdlk twowser.

— 25 points will be given for properly accepting connectidiosywarding requests to the server, and
sending replies back to the browser. Your proxy must be ablenhdle sequences of requests,
with memory and system resources recovered between raquest

— 5 points will be given for handling the SIGPIPE signal cotie{Please see the hints in Section
10).

¢ Handling concurrent requests (30 points). Your proxy isuiesl to handle multiple concurrent con-
nections so that one slow web server does not hold up othaestgfrom completing. Memory and
system resources must be recovered after servicing requalsto, your proxy must be free of race
conditions.

— 15 points will be given for accepting and servicing multipEncurrent connections.
— 5 points will be given for properly recovering memaory andtsys resources.
— 10 points will be given for eliminating race conditions.

e Caching (30 points). You will receive 30 points for a corrttuead-safe cache.

— 15 points will be given if your proxy returns cached objectisew possible. Your cache must
adhere to the cache size limit and the maximum object sizi¢ Emd must not insert duplicate
entries into the cache.

— 7.5 points will be given for a proper implementation of thedified least-recently-used (LRU)
eviction policy.

— 7.5 points will be given for proper use of locks. Your cachesinbe free of race conditions,
deadlocks, and excessive locking. Excessive locking dedikeeping the cache locked across a
network system call or not allowing multiple connectioneids to read from the cache concur-
rently. You may lock down the entire cache every time an up@ant insert) is performed.

5

e Style (10 points). Up to 10 points will be awarded for codet tkareadable, robust and well com-
mented. Define subroutines where necessary to make the ardeunderstandable. Also you should
check the return codes of all library functions and handtersras appropriate. It is NOT appropriate
to use the “capital-letter” CSAPP wrappers around systella.cihese wrappers will kill the entire
proxy if there is an error on a single connection. The cortkrrtg to do is to close that connection
and terminate the connection thread. You will lose styleisoif your proxy simply terminates when
it encounters an error during reading and writing.

8 Debugging and Testing Your Proxy

For this lab, you will not have any sample inputs or a drivesgsam to test your implementation. You
will have to come up with your own tests to help you debug yadecand decide when you have a correct
implementation. This is a valuable skill for programmingdhe real world, where exact operating conditions
are rarely known and reference solutions are usually natsdle.

Below are some suggested means by which you can debug youy; pochelp you get started. Be sure to
exercise all code paths and test a representative set dsinpaluding base cases, typical cases, and edge
cases.

e Telnet You can use telnet to send requests to any web server (amdigur proxy). For initial
debugging purposes, you can use print statements in youy pgootrace the flow of information
between the proxy, clients and web servers. Run your praxy fa fish machine on an unused port,
then connect to your proxy from another xterm window and nrakgiests. The following output is a
sample client trace where the proxy is running on tunascsnou.edu on port 1217:

unix> telnet tuna.ics.cs.cmu.edu 1217
Trying 128.2.206.26...

Connected to tuna.ics.cs.cmu.edu.
Escape character is 7.

GET http://www.yahoo.com HTTP/1.0

HTTP/1.0 200 OK

e Tiny Server We have provided you with code to the CS:APP Tiny Web Servénerhandout direc-
tory. A version is also available through the CS:APP studestisite

http://csapp.cs.cmu.edu/public/students.html

You may wish to modify the code in order to control any servehdyvior and/or to debug from the
web server’s end.

e Web browsersAfter your proxy is working with telnet, then you should téstvith a real browser!
It is very exciting to see your code serving content from d seaver to a real browser. Please test

6

prior to demo time that your proxy works Mozilla Firefox; iby can test with other browsers, you
are encouraged to do so.

To setup Firefox to use a proxy, open the Settings windowhénddvanced pane, there is an option to
“Configure how Firefox connects to the Internet”. Click thettgigs button and seinly your HTTP
proxy (using manual configuration). The server will be whatdish machine your proxy is running
on, and the port is the same as the one you passed to the prexyyeh ran it.

e Suggested Website¥our proxy should be able to serve any web page. As a first bmpever, we
recommend that your proxy be able to serve the web pages lislow. The list is by no means
exhaustive; we will test your proxy with additional websituring the demo. The list is in approxi-
mately increasing order of how much your proxy will be stexb@ serving the website.

— http://www.cs.cmu.edu/ 213
— http://www.cs.cmu.edu/

— http://www.newyorktimes.com/
— http://iwww.cnn.com/

— http://www.youtube.com/

9 Handin Instructions

Make sure you have includedl names and Andrew IDs of your group membersn the header comments
of each file you hand in.

Hand inproxylab.tar.gz , Which includes all files you need to compile your proxy wibly,uploading
them to Autolab.

Steps to tar up your lab:

1) make clean

2) cd ..

3) tar czvf proxylab.tar.gz proxy-handout (i.e., tar the di rectory, not the
files.)

Important: Each group member must upload these code files togt credit. (Of course if you are in the

same group, you will each be uploading the same code fileshistis OK).
You may submit your solution as many times as you wish up timtildue date.

10 Resources and Hints

e Read Chapters 11 - 13 in your textbook. They contain usefoitrimation on system-level 1/0, network
programming, HTTP protocols, and concurrent programming.

e To get started, you can start with the echo server describgdur text and then gradually add func-
tionality. The Tiny Web server described in your text wilsalprovide useful hints.

¢ VERY IMPORTANT: Thread-safety. Please be very careful when accessingdstariables from
multiple threads. Normally, the cache should be the onlyesh@bject accessed by the different
threads concurrently. Make sure you have enumerated @uditons: for example, while one thread
is utilizing a cache entry object, another thread might gméree’ing the same entry.

At the same time, it is important to perform locking only aagés where it is necessary because it
can cause significant performance degradation.

e When using threads, keep in mind tlggthostbyname is not thread-safe and should be protected
using a lock and copy technique, as described in your text.

¢ IMPORTANT: When using threads to handle connection requests, you mushem asletached,
notjoinable, to avoid memory leaks that could crash the machine. To rimeatl detached, add the
line pthread _detach(thread .d) inthe parent after callingthread _create()

e Use the RIO (Robust 1/0) package described in your textbaolall I/O on sockets. Do not use
standard I/O functions such &gad andfwrite on sockets. You will quickly run into problems
if you do.

e IMPORTANT: Be aware that the default error handling wrappers (uppe fiest letter) supplied for
the RIO routines ircsapp.c are not appropriate for your proxies because the wrappersnate
whenever they encounter any kind of error. Your proxy shdagdmore forgiving. Use the regular
RIO routines (lower case first letter) for reading and wagtinf you encounter an error reading or
writing to a socket, simply close the socket. Here are sornaengkes of the kinds of errors you can
expect to encounter:

— In certain cases, a client closing a connection prematuesylts in the kernel delivering a
SIGPIPE signal to the proxy. This is particularly the casehvimternet Explorer. To prevent
your proxy from crashing, you should ignore this signal byliad the following line early in
your code:

Signal(SIGPIPE, SIG_IGN);

— In certain cases, writing to a socket whose connection has bsed prematurely results in
thewrite system call returning a -1 and settiegno to EPIPE (Broken pipe). Your proxy
should not terminate whenvarite elicits an EPIPE error. Simply close the socket, optionally
print an error message, and continue.

— Reading from a socket whose connection has been reset bethel lat the other end (e.g., if
the process that owned the connection dies) can cause tthéoreaturn a -1 witherrno to
ECONNRESET (Connection reset by peer). Again, your proxguthnot die if it encounters
this error.

e Here is how you should forward browser requests to servemsdo achieve the simplest and most
predictable behavior from the servers:

— Always send a “Hostxhostname-” request header to the server. Some servers (like csapmasedu)
require this header because they use virtual hosting. Fanple, the Host header for csapp.cs.cmu.edu
would be “Host: csapp.cs.cmu.edu”.

— Forward all requests to servers as version HTTP/1.0, evilse ibriginal request was HTTP/1.1.
Since HTTP/1.1 supports persistent connections by defdndtserver won't close the connec-
tion after it responds to an HTTP/1.1 request. If you forwtrd request as HTTP/1.0, you
are asking the server to close the connection after it sdresesponse. Thus your proxy can
reliably use EOF on the server connection to determine tdeoéthe response.

— Replace any Connection/Proxy-Connection: [connectiiert] request headers with Connection/Proxy-
Connection: close. Also remove any Keep-Alive: [timemteival] request headers. The rea-
son for this is that some misbehaving servers will sometioes persistent connections even
for HTTP/1.0 requests. You can force the server to close tdmnection after it has sent the
response by sending the Connection: close header.

e Finally, try to keep your code as “object-oriented” and mlad@as possible. In other words, make
sure each data structure is initialized, accessed, chamgegked by a small set of functions.

