
15-213, Fall 2009
Lab Assignment L4: Writing Your Own Unix Shell
Assigned: Tue, Oct 6, Due: Thu, Oct 22, 11:59PM

Last Possible Time to Turn in: Thr, Oct 24, 11:59PM

Ben Blum and Teddy Martin (15-213-staff@cs.cmu.edu) are the lead TAs for this assignment.

1 Introduction

The purpose of this assignment is to become more familiar with the concepts of process control and sig-
nalling. You’ll do this by writing a simple Unix shell program that supports job control and I/O redirection.
Please read the whole writeup before starting.

2 Logistics

This is an individual project. You should do this lab on one ofthe Fish machines. As always, clarifications
and corrections will be posted on the Autolab message board.

3 Hand Out Instructions

Download the filetshlab-handout.tar from Autolab, and copy it to the protected directory (thelab
directory) in which you plan to do your work. Then do the followingon a Fish machine:

• Type the commandtar xvf tshlab-handout.tar to expand the tar-file.

• Type your name and Andrew ID in the header comment at the top oftsh.c.

• Type the commandmake to compile and link the driver, the trace interpreter, and the test routines.

Looking at thetsh.c (tiny shell) file, you will see that it contains a skeleton of a simple Unixshell. It will
not, of course, function as a shell if you compile and run it now. To help you get started, we have already
implemented the less interesting functions such as the routines that manipulate the job list and the command

1



line parser. Your assignment is to complete the remaining empty functions listed below. As a sanity check
for you, we’ve listed the approximate number of lines of codefor each of these functions in our reference
solution (which includes lots of comments, this is a good thing).

• eval: Main routine that parses and interprets the command line. [300 lines, including some helper
functions]

• sigchld handler: Catches SIGCHLD signals. [40 lines]

When you wish to test your shell, typemake to recompile it. To run it, typetsh to the command line:

linux> ./tsh
tsh> [type commands to your shell here]

4 General Overview of Unix Shells

A shell is an interactive command-line interpreter that runs programs on behalf of the user. A shell repeat-
edly prints a prompt, waits for acommand lineonstdin, and then carries out some action, as directed by
the contents of the command line.

The command line is a sequence of ASCII text words delimited by whitespace. The first word in the
command line is either the name of a built-in command or the pathname of an executable file. The remaining
words are command-line arguments:

• If the first word is a built-in command, the shell immediatelyexecutes the command in the current
process.

• Otherwise, the word is assumed to be the pathname of an executable program. In this case, the shell
forks a child process, then loads and runs the program in the context of the child.

The child processes created as a result of interpreting a single command line are known collectively as a
job. In general, a job can consist of multiple child processes connected by Unix pipes. However, the shell
you write in this lab need not support pipes.

If the command line ends with an ampersand “&”, then the job runs in thebackground, which means that
the shell does not wait for the job to terminate before printing the prompt and awaiting the next command
line. Otherwise, the job runs in theforeground, which means that the shell waits for the job to terminate
before awaiting the next command line. Thus, at any point in time, at most one job can be running in the
foreground. However, an arbitrary number of jobs can run in the background.

For example, typing the command line

tsh> jobs

causes the shell to execute the built-injobs command. Typing the command line

tsh> /bin/ls -l -d

2



runs thels program in the foreground. By convention, the shell ensuresthat when the program begins
executing its main routine

int main(int argc, char *argv[])

theargc andargv arguments have the following values:

argc == 3
argv[0] == ‘‘/bin/ls’’
argv[1]== ‘‘-l’’
argv[2]== ‘‘-d’’

Alternatively, typing the command line

tsh> /bin/ls -l -d &

runs thels program in the background.

Unix shells support the notion ofjob control , which allows users to move jobs back and forth between back-
ground and foreground, and to change the process state (running, stopped, or terminated) of the processes
in a job. For example,

• Typing ctrl-c causes a SIGINT signal to be delivered to each process in the foreground job. The
default action for SIGINT is to terminate the process.

• Similarly, typingctrl-z causes a SIGTSTP signal to be delivered to each process in theforeground
job. The default action for SIGTSTP is to place a process in the stopped state, where it remains until
it is awakened by the receipt of a SIGCONT signal.

Unix shells also provide various built-in commands that support job control. For example:

• jobs: List the running and stopped background jobs.

• bg job: Change a stopped background job into a running background job.

• fg job: Change a stopped or running background job into a running foreground job.

• kill job: Terminate a job.

Unix shells also support the notion ofI/O redirection , which allows users to redirectstdin andstdout
to disk files. For example, typing the command line

tsh> /bin/ls > foo

redirects the output ofls to a file calledfoo. Similarly,

tsh> /bin/cat < foo

displays the contents of filefoo onstdout.

3



5 Thetsh Specification

Your tsh shell should have the following features:

• The prompt should be the string “tsh> ”.

• The command line typed by the user should consist of aname and zero or more arguments, all sepa-
rated by one or more spaces. Ifname is a built-in command, thentsh should handle it immediately
and wait for the next command line. Otherwise,tsh should assume thatname is the path of an
executable file, which it loads and runs in the context of an initial child process (In this context, the
term job refers to this initial child process). If you are running system programs likels, you will
need to enter the full path (in this case/bin/ls) because your shell does not have search paths.
(Alternatively, if your shell usesexecvp instead ofexecve, it will search in your$PATH for the
executable, but this is not required.)

• tsh need not support pipes (|), butMUST support I/O redirection (“<” and “>”), for instance:

tsh> /bin/cat < foo > bar

Your shell must support both input and output redirection inthe same command line.

• Typingctrl-c should cause a SIGINT signal to be sent to the current foreground job (andctrl-z
for SIGTSTP), as well as any descendants of that job (e.g., any child processes that it forked). If there
is no foreground job, then the signal should have no effect.

• If the command line ends with an ampersand&, thentsh should run the job in the background.
Otherwise, it should run the job in the foreground.

• Each job can be identified by either a process ID (PID) or a job ID (JID), which is a positive integer
assigned bytsh. JIDs should be denoted on the command line by the prefix ’%’. For example, “%5”
denotes JID 5, and “5” denotes PID 5. (We have provided you with all of the routinesyou need for
manipulating the job list.)

• tsh should support the following built-in commands:

– Thequit command terminates the shell.

– Thejobs command lists all background jobs.

– Thebg job command restartsjob by sending it a SIGCONT signal, and then runs it in the
background. Thejob argument can be either a PID or a JID.

– Thefg job command restartsjob by sending it a SIGCONT signal, and then runs it in the
foreground. Thejob argument can be either a PID or a JID.

• Your shell should be able to redirect the output from thejobs built-in command. For example

tsh> jobs > foo

• tsh should reap all of its zombie children. If any job terminatesbecause it receives a signal that
it didn’t catch, thentsh should recognize this event and print a message with the job’s PID and a
description of the offending signal.

4



6 Process groups and TTY ownership

When you run your shell from the standard Unix shell, your shell is running in the foreground process group.
If your shell then creates a child process, by default that child will also be a member of the foreground
process group. Since typingctrl-c sends a SIGINT to every process in the foreground group, typing
ctrl-c will send a SIGINT to your shell, as well as to every process that your shell created (including
background processes!), which obviously isn’t correct.

Use of setpgid.After thefork, but before theexec, the child process should callsetpgid(0, 0),
which puts the child in a new process group whose group ID is identical to the child’s PID. Putting your
children in different process groups will limit which of them receive signals, and also which of them can
read input from the terminal.

Use of tcsetpgrp. When you change aforeground child process’s process group ID withsetpgid, you
will need to also give it ownership of the controlling terminal with tcsetpgrp. (Though it’s not neces-
sary, consider usingisatty to find an appropriate file descriptor fortcsetpgrp’s first argument. The
manpages fortcsetpgrp, isatty, andstdin should prove useful.) When a signal is sent from the
terminal, only processes in the process group that owns the terminal will receive that signal. Also, only
processes in that process group are allowed to read input from the terminal - any other process attempting
to do so will receiveSIGTTIN and be stopped as though bySIGSTOP.

Make sure you understand how use ofsetpgid andtcsetpgrpaffects which processes have read access
to the terminal and which processes receive user-sent signals, and remember to consult the reference shell
if there’s any confusion about how your shell should behave.

Note. When autolab tests your shell, it will be running in an environment without a controlling tty. This
means that your shell will need to behave appropriately evenwhen there is no file descriptor with which you
can successfully calltcsetpgrp. It also means that autolab can’t test for proper usage oftcsetpgrp
- the TAs will check for that when going over your code for style. Fortunately, it’s easy to verify by hand:
Make sure that, after implementing use of these two functions:

• Any foregrounded process (via normal command orfg) that wants to read from the terminal (such as
cat or vim) can.

• Any backgrounded process (viacommand & or bg) that tries to do so gets stopped.

• After a foreground process exits or is stopped, the shell is again able to read input from the terminal.

• Typingctrl-c or ctrl-z during a foregrounded process’s execution affects only that process and
its children. (Your shell shouldnot need to catch the signal and ”forward it along”, nor should a
backgrounded process ever see the signal.)

7 Checking Your Work

Running your shell. The best way to check your work is to run your shell from the command line. Your
initial testing should be done manually from the command line. Run your shell, type commands to it, and
see if you can break it. Use it to run real programs!

5



Reference solution.The 64-bit Linux executabletshref is the reference solution for the shell. Run this
program (on a 64-bit machine) to resolve any questions you have about how your shell should behave. Your
shell should emit output that is identical to the reference solution (except for PIDs, of course, which change
from run to run).

Once you are confident that your shell is working, then you canbegin to use some tools that we have
provided to help you check your work more thoroughly. (Theseare the same tools that the autograder will
use when you submit your work for credit.)

Trace interpreter. We have provided a set of trace files (trace*.txt) that validate the correctness of
your shell (the appendix section at the end of this handout describes each trace file briefly). Each trace
file tests one shell feature. For example, does your shell recognize a particular built-in command? Does it
respond correctly to the user typing actrl-c?.

Theruntrace program (the trace interpreter) interprets a set of shell commands specified by a single trace
file:

linux> ./runtrace -h
Usage: runtrace -f <file> -s <shellprog> [-hV]
Options:

-h Print this message
-s <shell> Shell program to test (default ./tsh)
-f <file> Trace file
-V Be more verbose

The neat thing about the trace files is that they generate the same output you would have gotten had you run
your shell interactively (except for an initial comment that identifies the trace). For example:

linux> ./runtrace -f trace05.txt -s ./tsh
#
# trace05.txt - Run a background job.
#
tsh> ./myspin1 &
[1] (15849) ./myspin1 &
tsh> quit

The lower-numbered trace files do very simple tests, and the higher-numbered tests do increasingly more
complicated tests.

Shell driver. After you have usedruntrace to test your shell on each trace file individually, then you are
ready to test your shell with the shell driver. Thesdriver program usesruntrace to run your shell on
each trace file, compares the output to the output produced bythe reference shell, displays thediff if they
differ, and optionally sends the results to the Autolab server:

linux> ./sdriver -h
Usage: sdriver [-hV] [-s <shell> -t <tracenum> -i <iters>]
Options
-h Print this message.
-i <iters> Run each trace <iters> times (default 4)
-s <shell> Name of test shell (default ./tsh)

6



-t <n> Run trace <n> only (default all)
-V Be more verbose.

Running the driver without any arguments tests your shell onall of the trace files. To help detect race
conditions in your code, the driver runs each trace multipletimes. You will need to pass each of the tests to
get credit for a particular trace:

linux> ./sdriver
Running 4 iters of trace00.txt
1. Running trace00.txt...
2. Running trace00.txt...
3. Running trace00.txt...
4. Running trace00.txt...
Running 4 iters of trace01.txt
1. Running trace01.txt...
2. Running trace01.txt...
3. Running trace01.txt...
4. Running trace01.txt...
Running 4 iters of trace02.txt
1. Running trace02.txt...
2. Running trace02.txt...
3. Running trace02.txt...
4. Running trace02.txt...

...

Running 4 iters of trace23.txt
1. Running trace23.txt...
2. Running trace23.txt...
3. Running trace23.txt...
4. Running trace23.txt...
Running 4 iters of trace24.txt
1. Running trace24.txt...
2. Running trace24.txt...
3. Running trace24.txt...
4. Running trace24.txt...

Summary: 25/25 correct traces

Use the optional-i argument to control the number of times the driver runs each trace file:

linux> ./sdriver -i 1
Running trace00.txt...
Running trace01.txt...
Running trace02.txt...
Running trace03.txt...

...

Running trace23.txt...

7



Running trace24.txt...

Summary: 25/25 correct traces

Use the optional-t argument to test a single trace file:

linux> ./sdriver -t 06
Running trace06.txt...
Success: The test and reference outputs for trace06.txt matched!

Note: The driver program runs the reference shell, which is a64-bit binary, and thus will not run on a 32-bit
machine.

8 Hints

• Read and understand every word of Chapter 8 (Exceptional Control Flow) and Chapter 11 (System-
level I/O) in your textbook.

• Read the code intsh.c carefully before you start. Understand the high-level control flow, get
familiar with the defined global variables and the helper routines.

• Play with your shell by typing commands to it directly. Don’tmake the mistake of running the trace
generator and driver immediately. Develop some familiarity and intuition about how your shell works
before testing it with the automated tools.

• Only after you have tested your shell directly from the command and are fairly confident that it is
correct should you start testing with theruntrace and driver programs.

• Use the trace files to guide the development of your shell. Starting with trace00.txt, make
sure that your shell produces theidentical output as the reference shell. Then move on to trace file
trace01.txt, and so on.

• Thewaitpid, kill, fork, execve, setpgid, tcsetpgrp, isatty, sigprocmask, and
sigsuspendfunctions will come in very handy. The WUNTRACED and WNOHANGoptions to
waitpid will also be useful. Useman to check out the details about each function.

• One of the tricky parts of the assignment is deciding on the allocation of work between theeval and
sigchld handler functions when the shell is waiting for a foreground job to finish. For example,
you will need to think about the various ways you can make yourshell wait for a foreground process
to exit (waitpid andsigsuspend) and where they should each be used.

• Remember that usingsleep and/or busy-waiting arenever acceptable ways of solving concurrency
problems.

• Be careful about race conditions on the job list. Remember that you cannot make any assumptions
about the order of execution of the parent and child after forking. In particular, you cannot assume
that the child will still be running when the parent returns from thefork. In fact, our driver has code

8



that purposely introduces non-determinism in the order that the parent and child execute after forking.
Also, remember that signal handlers run concurrently with the program and can interrupt it anywhere,
unless you explicitly block the receipt of the signals.

• In eval, the parent must usesigprocmask to blockSIGCHLD signals before it forks the child, and
then unblock it, again usingsigprocmask after it adds the child to the job list by callingaddjob.
Since children inherit theblocked vectors of their parents, the child must be sure to then unblock
SIGCHLD before itexecs the new program. The child should also restore the default handlers for
the signals that are ignored by the shell.

The parent needs to block signals in this way in order to avoidrace conditions (e.g., the child is
reaped bysigchld handler (and thus removed from the job list)before the parent callsaddjob).
Section 8.5.6 has details about the race conditions and how to block signals explicitly.

Please note thatblocking signals is different fromignoring signals - when a signal is blocked, it will
be received when it is unblocked, and when a signal is ignored, it will not be received. Your shell
should ignoreSIGINT andSIGTSTP but notSIGCHLD, and sometimes blockSIGCHLD but not
necessarilySIGINT or SIGTSTP.

9 Evaluation

Your score will be computed out of a maximum of 139 points based on the following distribution:

100 Correctness: 25 trace files at 4 pts each

24 Correctness: 6 secret trace files at 4 pts each

5 Correctness: Hand-graded use oftcsetpgrp

10 Style points. We expect you to have good comments and to checkthe return value of EVERY system
call. We also expect you to break up large functions such aseval into smaller helper functions, to
enhance readability and avoid duplicating code. Some advice about commenting:

• Do begin each routine with a block comment describing its role at a high level.

• Do preface related lines of code with a block comment.

• Do use consistent indenting and brace style.

• Do keep your comments and code within 80 character lines.

• Don’t simply comment each line.

You should also follow other guidelines of good style, such as using a consistent indentation scheme,
using descriptive variable names, and grouping logically related blocks of code with whitespace.

Please note that the driver program is not a perfect test for race conditions, and you should study your
code very carefully to ensure that you have no race conditions. The TAs will read over the code and
verify correctness, and reserve the right to deduct points after the end of the lab if that is necessary.

9



Your solution shell will be tested for correctness on a 64-bit fish machine (the Autolab server), using the
same driver and trace files that were included in your handoutdirectory. Your shell should produceidentical
output on these traces as the reference shell, with only two exceptions:

• The PIDs can (and will) be different.

• The output of the/bin/ps commands intrace19.txt, trace20.txt, andtrace21.txt
will be different from run to run. However, the running states of anymysplit processes in the
output of the/bin/ps command should be identical.

The driver deals with all of these subtleties when it checks for correctness.

10 Hand In Instructions

• Make sure you have included your name and Andrew ID in the header comment oftsh.c.

• Hand in yourtsh.c file for credit by uploading it to Autolab. You may hand in as often as you like.
You will be graded on thelast version you hand in.

• After you hand in, it takes a minute or two for the driver to runthrough multiple iterations of each
trace file.

• We’ll be using a sophisticated cheat checker that compares handins from this year and previous years.
Please don’t copy another student’s code. Start early, and if you get stuck, come see your instructors
for help.

Good luck!

10



Appendix: Trace Files

The trace driver runs an instance of your shell in a child process and communicates with the shell interac-
tively in a way that mimics the behavior of a user. To test the behavior of your shell, the trace driver reads
in trace files that specify shell line commands (that are actually sent to the shell) as well as a few special
synchronization commands (that are interpreted by the driver when handling the shell process). The trace
files may also reference a number of shell test programs to perform various functions, and you may refer to
the code and comments of these test programs for more information.

The format of the trace files is as follows:

• The comment character is#. Everything to the right of it on a line is ignored.

• Each trace file is written so that the output from the shell shows exactly what the user typed. We do
this by using the/bin/echo program, which not only tests the shell’s ability to run programs, but
also shows what the user typed. For example:

/bin/echo -e tsh\076 ./myspin1 \046

Note: octal\076 is > and octal\046 is &. These are special shell metacharacters that need to be
escaped. This line representstsh> ./myspin1 &, that is, a user trying to run./myspin1 in the
background.

• There are also a few special commands for synchronization between the job (your shell) and the parent
process (the driver) and to send Unix signals from the parentto the job.

WAIT Wait for a sync signal from the job over its synchronizing domain socket.
SIGNAL Send a sync signal to the job over its synchronizing domain socket.

NEXT
Read and print all responses from the shell until you see the next shell prompt.
This command is essential for synchronizing with the shell and mimics the way
people wait until they see the shell prompt until they type the next string.

11



The following table describes what each trace file tests on your shell against the reference solution.

NOTE: this table is provided so that you can quickly get a high levelpicture about the testing traces. The
explanation here is over-simplified. To understand what exactly each trace file does, you need to read the
trace files.

trace00.txt Properly terminate on EOF.
trace01.txt Process built-in quit command.
trace02.txt Run a foreground job that prints an environment variable.
trace03.txt Run a synchronizing foreground job without any arguments.
trace04.txt Run a foreground job with arguments.
trace05.txt Run a background job.
trace06.txt Run a foreground job and a background job.
trace07.txt Use the jobs built-in command.
trace08.txt Send fatal SIGINT to foreground job.
trace09.txt Send SIGTSTP to foreground job.
trace10.txt Send fatal SIGTERM (15) to a background job.
trace11.txt Child sends SIGINT to itself.
trace12.txt Child sends SIGTSTP to itself.
trace13.txt Correct handling of SIGINT with foreground job present.
trace14.txt Correct handling of SIGTSTP with foreground job present.
trace15.txt Process bg built-in command (one job).
trace16.txt Process bg built-in command (two jobs).
trace17.txt Process fg built-in command (one job).
trace18.txt Process fg built-in command (two jobs).
trace19.txt Foreground child sends SIGINT to its own process group.
trace20.txt Foreground child sends SIGTSTP to its own process group.
trace21.txt Restart every stopped process in process group.
trace22.txt I/O redirection (input).
trace23.txt I/O redirection (input and output).
trace24.txt I/O redirection (input and output, but different order).

secret-trace00.txt Process built-in quit and jobs commands.
secret-trace01.txt Send fatal SIGTERM to a background job.
secret-trace02.txt Correct handing of SIGINT and SIGTSTP with foreground job.
secret-trace03.txt Process bg and fg built-in commands.
secret-trace04.txt Foreground child sends SIGINT and SIGTSTP to its own processgroup.
secret-trace05.txt I/O redirection.

12


